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Abstract 

This study aimed to determine the effectiveness of different spectral windows, such as Daniel, Tukey, Hamming, Parzen, 
and Bartlett, in identifying the periodicity of monthly average sunspot data (Wolf-Sunspot, 1961–1980). The goal was 
to comprehend the recurring patterns of sunspot activity, which is crucial in anticipating solar activity and its potential 
impact on Earth. By employing these windows, the accuracy of this method in uncovering the underlying periodicity is 
evaluated. 
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1. Introduction

Sunspot activity displays periodic patterns essential for predicting solar activity and its potential impact on Earth. 
Sunspot data has drawn the attention of many time-series analysts due to its notable feature of having cycles of activity 
that differ in duration, occurring with an average periodicity of approximately 11 years. This distinctive attribute 
prompted the scientist Yule to apply the autoregressive method to analyze this data, as well as the scientists Box and 
Jenkins (1970)(1). Spectral analysis, a frequency-domain analysis of time series, is utilized to understand and uncover 
these patterns. However, the raw periodogram obtained from particular observations is an asymptotically unbiased 
estimator for the spectral function but not a consistent estimator, resulting in significant fluctuations in the periodogram 
graph (2). The lack of consistency is expected in Fourier series representation since 𝑁 parameters need to be estimated 
from 𝑁 observations, regardless of the series size (3). Spectral (Tuckey, 1950; Daniell, 1946; Bartlett, 1946; Hamming, 
1989; and Parzen, 1961) windows can be used to estimate the spectral density function of the series, which involves 
smoothing the periodogram (4–8). This study examines the effectiveness of these windows in evaluating the spectral 
density function, which identifies the periodicity of monthly average sunspot data (Wolf-Sunspot, 1961-1980). It 
assesses the accuracy of this approach in capturing the underlying periodic patterns. The performance of the windows 
is assessed by calculating their standard deviations and comparing them based on the smallest standard deviation value. 
The window with the smallest standard deviation value is considered to have the best performance.  

It is worth indicating that there are several key differences between this study and previous ones: 

• We have used a significantly larger dataset, comprising 20 years' average monthly data, which amounts to
approximately 240 values. In contrast, previous researchers relied on datasets that did not exceed 100 values.
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• Our analysis takes a different approach (non-parametric) by employing the frequency domain instead of the 
time-domain method (parametric) used by previous researchers. This allows us to avoid depending on 
probabilistic models to describe the data (1). 

• Our study benefits from the use of advanced statistical packages such as STATISTICA and SPSS software for 
conducting calculations. These tools were not available to previous researchers studying the same data, 
enabling us to achieve more precise calculations. 

Finally, it is important to note that we standardized the span (the width or range of frequencies covered within a 
window) of all windows to observe the impact of window shape solely. 

1.1. Some Definitions  

• Stochastic Process: A stochastic process is a family of random variables {𝑋𝑡 , 𝑡 ∈ 𝑇} defined on a probability 
space (Ω, ℱ, 𝑃). 

• Stationarity: The time series {𝑋𝑡 , 𝑡 ∈ ℤ }, with index set ℤ = {0, ±1, ±2, … }, is said to be stationary if i) 𝐸|𝑋𝑡|2 <
∞ for all 𝑡 ∈ ℤ, ii) 𝐸(𝑋𝑡) = 𝑚 for all 𝑡 ∈ ℤ, and iii) 𝛾𝑋(𝑟, 𝑠) = 𝛾𝑋(𝑟 + 𝑡, 𝑠 + 𝑡) for all 𝑟, 𝑠, 𝑡 ∈  ℤ. 

• Strict Stationarity: The time series {𝑋𝑡 , 𝑡 ∈  ℤ} is said to be strictly stationary if the joint distributions of 
(𝑋𝑡1

, … , 𝑋𝑡𝑘
)′ and (𝑋𝑡1+ℎ , … , 𝑋𝑡𝑘+ℎ)′ are the same for all positive integers 𝑘 and for all 𝑡1, … , 𝑡𝑘 , ℎ ∈  ℤ. 

• Stationary up to Order m: The time series {𝑋𝑡 , 𝑡 ∈  ℤ} is said to be stationary up to order 𝑚 if all the joint 
moments up to order 𝑚 of (𝑋𝑡1

, … , 𝑋𝑡𝑘
)′ exist for all positive integers 𝑘 and for all 𝑡1, … , 𝑡𝑘, ℎ ∈  ℤ and equal the 

corresponding joint moments up to order m of (𝑋𝑡1+ℎ, … , 𝑋𝑡𝑘+ℎ)′ (2,9). 

• Gaussian Time Series: The process {𝑋𝑡} is a Gaussian time series if and only if the distribution functions of 
{𝑋𝑡} are all multivariate normal (10). 

• White Noise: The process {𝑋𝑡}, 𝑡 = 0, ±1, ±2, …, is called a white noise process if it consists of a sequence of 
uncorrelated random variables, i.e. if for all 𝑠 ≠ 𝑡, 𝑐𝑜𝑣{𝑋𝑠, 𝑋𝑡} = 0 (11). 

2. Spectral Analysis 

Spectral analysis is a statistical method used to analyze and interpret trends, cycles, and patterns in a data series over 
time. This technique is based on Fourier analysis, which decomposes a time series into a set of sinusoidal components 
(sin and cosine), each with a specific frequency, amplitude, and phase (12). Unlike other time series analysis methods 
(time-domain), spectral analysis does not specify a parametric model for the data and then estimate this model; instead, 
it estimates the spectral function (the spectrum) without any prior assumptions, although the estimates have to be 
adjusted according to the series' properties. The spectral analysis is particularly useful in fields such as economics, 
meteorology, geophysics, and engineering, where it is essential to understand the periodic behaviour of time ser ies 
data (2). In addition, it provides a powerful tool for identifying hidden periodicities, detecting them, and 
understanding the underlying dynamics of a time series (13). However, the use of spectral analysis is subject to 
certain conditions: 

• The time series data must be stationary, meaning that its statistical properties do not change over time (12). 
This includes the constant mean, variance, and autocorrelation structure. Non-stationary data can often be 
transformed into stationary data through differencing or detrending. 

• The time series should be infinite or at least very long. In practice, this condition is often relaxed, but it may 
lead to inaccuracies in the spectral estimates (2). 

• The time series should be regularly sampled. Irregularly sampled data can lead to complications in the spectral 
analysis, although methods have been developed to handle such data (14). 

2.1. Some Concepts in the Frequency Domain 

• Fourier Series: Fourier analysis in its crudest form is primarily about finding the best fit of the form of a 
function by a sum of sine and cosine functions, which is known as Fourier series expansion. Let a function 𝑓(𝑥) 
be defined on the interval (−𝜋, 𝜋), and let it satisfy a certain number of Dirichlet conditions. These conditions 
guarantee that 𝑓(𝑥) is reasonably 'well-behaved,' which means that over the interval(−𝜋, 𝜋), 𝑓(𝑥) is absolutely 
integrable, has a finite number of discontinuities, and possesses a finite number of maxima and minima. 
Consequently, 𝑓(𝑥) can be approximated by the Fourier series (𝑎0 2)⁄  ∑ [𝑎𝑟 cos 𝑟𝑥 +  𝑏𝑟 sin 𝑟𝑥]𝑘

𝑟=1  where the 

constant 𝑎0 , 𝑎𝑟  and 𝑏𝑟  are called a Fourier series coefficients, 𝑎0 =  (1 𝜋)⁄  ∫ 𝑓(𝑥)𝑑𝑥
𝜋

−𝜋
; 𝑎𝑟 =  (1 𝜋)⁄  

∫ 𝑓(𝑥) cos 𝑟𝑥 𝑑𝑥
𝜋

−𝜋
, 𝑟 = 0, 1, 2, … ; 𝑏𝑟 =  (1 𝜋)⁄  ∫ 𝑓(𝑥) sin 𝑟𝑥 𝑑𝑥

𝜋

−𝜋
, 𝑟 = 0, 1, 2, …  
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• It can be demonstrated that this Fourier series converges to 𝑓(𝑥) as 𝑘 → ∞, except at points of discontinuity, 
where it converges to the midpoint of the step change. To apply Fourier analysis to discrete time series, the 
Fourier series representation of 𝑓(𝑥)  needs to be examined when 𝑓(𝑥)  is defined solely on the integers 
1, 2, . . . , 𝑁. Instead of presenting the formula, we illustrate that the necessary Fourier series arises intuitively 
by analyzing a straightforward sinusoidal model (2,3). 

• Fourier Transform:  In mathematics, integrals of the form 𝐹(𝛼) = ∫ 𝑓(𝑥) 𝑘(𝛼, 𝑥) 𝑑𝑥
𝑏

𝑎
 often occur. The function 

𝐹(𝛼)  is said to be the integral transform of 𝑓(𝑥)  by the kernel 𝑘(𝛼, 𝑥) . Kernels associated with Fourier 

transforms is given by 𝐹(𝛽) = (1 √2𝜋⁄ ) ∫ 𝑓(x) exp (𝑖𝛽𝑥) 𝑑𝑥
𝑏

𝑎
. 

• The Spectral Density Function:  Let 𝑋(𝑡)  be a zero continuous parameter stationary process with power 
spectral density function ℎ(𝜔)  and corresponding autocovariance function 𝐶(𝜏) . In this case, ℎ(𝜔)  is the 
Fourier transform of (𝜏)  

ℎ(𝜔) =  (1 2𝜋)⁄ ∫ exp(−𝑖𝜔𝜏) 𝐶(𝜏) 𝑑𝜏
∞

−∞
. If ∫ |𝐶(𝜏)| 𝑑𝜏 <  ∞

∞

−∞
 holds and 𝑅(𝜏) is continuous at 𝜏 = 0 (continuity 

everywhere), 𝐶(𝜏)  can be obtained by using the inverse Fourier transform of ℎ(𝜔) , i.e. 𝐶(𝜏) =

∫ exp(𝑖𝜔𝜏) ℎ(𝜔) 𝑑𝜔
∞

−∞
 

In the case of real valued process, the complex term in the above integral vanishes and we obtain 

ℎ(𝜔) =  (1 2𝜋)⁄ ∫ cos  (𝜔𝜏) 𝑅(𝜏) 𝑑𝜏
∞

−∞
. It is evident that ℎ(𝜔) is an even function of 𝜔, and 𝐶(𝜏) can be derived from the 

relation 𝐶(𝜏) =  (1 2𝜋)⁄ ∫ cos  (𝜔𝜏) ℎ(𝜔) 𝑑𝜔
∞

−∞
. The function ℎ(𝜔)  represents the average contribution to the total 

power (variance) from components in 𝑋(𝑡) within the frequency range 𝜔 and 𝜔 + 𝑑𝜔 (15). 

Properties of 𝒉(𝝎): The function 𝑓(𝜔) has the following properties:  

∫ ℎ(𝜔)𝑑𝜔 = 𝐶(0) =  𝜎𝑥
2

+𝜋

−𝜋

 

ℎ(𝜔) ≥ 0. 

ℎ(−𝜔) = ℎ(𝜔) 

 for all 𝜔, i.e. ℎ(𝜔) is even function (10). 

• The Periodogram: The periodogram 𝐼𝑁(𝜔) for 𝑋1, 𝑋2, … , 𝑋𝑛 for all 𝜔 in the range −𝜋 ≤ 𝜔 ≤  𝜋 is defined as 
follows:  

• 𝐼𝑁(𝜔) = [𝐴1(𝜔)]2 +  [𝐴2(𝜔)]2, where 𝐴1(𝜔) = (√2 𝑁⁄ ) ∑ 𝑋𝑖 cos 𝜔𝑡𝑁
𝑖=1 , and 𝐴2(𝜔) = (√2 𝑁⁄ ) ∑ 𝑋𝑖 sin 𝜔𝑡𝑁

𝑖=1 . 

• 𝐼𝑁(𝜔)  could be written in the form (2 𝑁)⁄  | ∑ 𝑋𝑖
𝑁
𝑖=1 exp (−𝑖𝜔𝑡) | . In addition, 𝐼𝑁(𝜔)  is defined for all 𝜔  in 

(−𝜋, 𝜋) practice; it is computed only at discreate sets of frequencies.  

The periodogram is therefore computed at the frequencies 0, 2𝜋 𝑁⁄ , 4𝜋 𝑁⁄ , 6𝜋 𝑁⁄ , i.e. 

𝐼𝑝 = 𝐼𝑁(𝜔𝑝), 𝜔𝑝 =  2𝜋𝑝 𝑁⁄ , 𝑝 = 0, 1, … , [𝑁 2]⁄  (2). 

• The Modified Periodogram: The function 𝐼𝑁
∗ (𝜔) =  (1 4𝜋) 𝐼𝑁(𝜔)⁄  where 𝐼𝑁(𝜔) is ordinary periodogram, and 

the function 𝐼𝑁
∗ (𝜔) is known as the modified periodogram due to its close link to the periodogram. Most time 

series analysts call it just the periodogram. However, the alternative form of 𝐼𝑁
∗ (𝜔)  is 

(1 2𝜋)⁄ ∑ 𝐶̂𝑁−1
𝑠=−(𝑁−1) (𝑠) cos(𝑠𝜔). 

In other words 𝐼𝑁
∗ (𝜔)  is just the sample version of ℎ(𝜔)  which justifies calling 𝐼𝑁

∗ (𝜔) the sample spectral density 
function. It can be shown that the periodogram is an asymptotically unbiased estimate of ℎ(𝜔) for large 𝑁 as follows: 

𝐸 [𝐼𝑁
∗ (𝜔)] = (1 2𝜋)⁄ ∑ 𝐸 [𝐶̂𝑁−1

𝑠=−(𝑁−1) (𝑠) ] cos(𝑠𝜔) =  (1 2𝜋)⁄ ∑ [1 −
|𝑠|

𝑁
 ]  𝐶𝑁−1

𝑠=−(𝑁−1) (𝑠) cos(𝑠𝜔). 
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Using the relation 𝐸 [𝐶̂(𝑟)] = (1 𝑁)⁄ ∑ 𝑅𝑁−|𝑟|
𝐼=1 (𝑟) = [1 − (|𝑟| 𝑁⁄ )] 𝐶(𝑟).  As 𝑁  becomes large the factor  

[1 − (|𝑟| 𝑁⁄ )] ⟶ 1 for all 𝑠. Hence 𝐸 [𝐼𝑁
∗ (𝜔)] = (1 2𝜋)⁄ ∑ 𝐶(𝑠)∞

𝑠=−∞ cos  (𝑠𝜔) = ℎ(𝜔) (16,17). 

• Properties of the Periodogram: The raw periodogram is generally a poor estimate of the spectral density 
function for the following reasons: 

o As 𝑁 ⟶ ∞, the variance of the periodogram does not go to zero, thus showing that 𝐼𝑁
∗ (𝜔) is not a 

consistent estimator for ℎ(𝜔). 
o For any fixed neighboring frequencies, 𝜔1, 𝜔2, 𝑐𝑜𝑣 [𝐼𝑁

∗ (𝜔1), 𝐼𝑁
∗ (𝜔2)]  decrease as 𝑁  increases, which 

causes the periodogram to have an erratic and widely fluctuating pattern. Priestley (1981) gave a 
reasonable expansion for the inconsistency of 𝐼𝑁

∗ (𝜔) by pointing out that 𝐼𝑁
∗ (𝜔) includes all the sample 

autocovariance extending from 𝑠 = 0  to 𝑁 − 1 , and hence no matter how large 𝑁  becomes, 𝐼𝑁
∗ (𝜔) 

always involves the tail of the sample autocovariance function, which is a poor estimate of the 
corresponding theoretical autocovariance since in the tail region 𝐶(𝑠) is based only on a small number 
of pairs of observations. 

Finally, it is important to note that the periodogram, in its raw form, suffers from a problem known as leakage. This 
means that the frequencies can "leak" into adjacent frequencies, affecting the accuracy of the analysis.  

There are three approaches to address the issue of leakage: 

• Padding the Series: by padding the data, you can apply a finer frequency resolution to the analysis. 
• Tapering the Series: by tapering the data before analysis, you can reduce the effects of leakage. 
• Smoothing the Periodogram: smoothing the periodogram can help identify the overall frequency region that 

contributes most significantly to the periodic nature of the data.  

Shumway & Stoffer (2018) discussed the problem of the leakage and related topics. Hence, To minimize leakage from 
the periodogram, time series analysts often use an estimator of ℎ(𝜔) , based on the periodogram, expressed as  

ℎ̂𝑎 = (1 2𝜋⁄ ) ∑ 𝐶̂ (𝑠) cos(𝑠𝜔)𝑀
𝑠=−𝑀 . Here, 𝑀 is an integer less than (𝑁 − 1), and its specific value should be determined 

from the data provided. Moreover, In the subject literature, an estimate ℎ̂𝑎 is known as a truncated periodogram, and 
𝑀 is called the truncation point (2). 

2.2. Spectral Windows 

Spectral windows are essential tools in spectral analysis, designed to reduce the leakage effect and enhance the accuracy 
of frequency estimation. In time series analysis, spectral windows play a crucial role in mitigating or minimizing the 
interference that can result in spectral leakage. Some of the most commonly used windows are the Tukey window, 
Daniel window, Hamming window, Bartlett window, and Parzen window, each distinguished by its specific features and 
applications. 

Spectral windows play crucial roles in a time series analysis, and their purpose is to mitigate or minimize the 
interference that would otherwise manifest as spectral leakage. Some of the most used windows are the Tukey window, 
Daniel window, Hamming window, Hanning window, and Parzen window, each with its own unique features due to its 
use. 

• Tukey Window: This is unique in its ability to trade off the frequency accuracy estimation for minimizing 
spectral leakage. This consists of a rectangular window with a cosine taper, which controls side lobes in effect 
(19). 

• Daniel Window: It is used for particular time series predicting applications to enhance the frequency 
resolution and damp or attenuate noise (5). 

• Hamming Window: This window is applied in many cases, owing to its capability to reduce side lobes, hence 
improving the accuracy of the frequency estimates. This is highly used in digital signal processing (7). 

• Bartlett Window: This triangular window provides a simple yet effective means of reducing spectral leakage. 
It is often used in applications with desirable computational simplicity (20).  

• 5) Parzen Window: Smoothing of data - The Parzen window technique is mostly used in non-parametric density 

estimation, but it can equally further the cause of increasing the accuracy of frequency estimation. It does so 

through kernel density estimations that incorporate observational weights, whereby closer observations 

tend to influence the estimator averages (21). 
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For more comprehensive information, you may refer to the works of Jenkins & Watts (1968); Priestley (1981); Warner 
(1998); Chatfield & Xing (2019); and Bloomfield (2004) (1–3,12,23) Results  

This section presents the main contribution of the paper, which is to evaluate the effectiveness of spectral windows in 
detecting periodicity in monthly average sunspot data. We used various windows, including Daniel, Tukey, Hamming, 
Parzen, and Bartlett. 

Initially, we checked the stationarity of the series. Upon plotting the series (Fig. 1), it was observed that non -
stationarity existed.  

 

Figure 1 Time Plot of the Monthly Average Sunspot Data 

Therefore, we processed the data using the first successive differences until the series became stationary. After ensuring 
the stationarity of the series, we generated a periodic chart of the variables (Fig. 2). It was observed that some values in 
the series varied, but this did not necessarily mean that these were the only differences in the series. There might be 
some other differences that we were unable to observe clearly.  

 

Figure 2 Time Plot of the Transformed Monthly Average Sunspot Data 

Therefore, we applied natural logarithmic transformation to the periodic chart, which provided us with more 
explanations of the differences in the series (Fig. 3).  
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Figure 3 Time Plot of Log10 Monthly Average Sunspot Data 

The analysis was conducted using the STATISTICA statistical package. The following tasks were performed:  

• Calculation of the mean and standard deviation of the spectral density estimate (smoothed periodogram) and 
the weights used in smoothing. The smoothing was done using well-known windows in spectral estimation, 
specifically Daniell, Tukey, Hamming, Parzen, and Bartlett. 

• Plotting the unsmoothed (raw) periodogram on a log scale in Fig. 4 and applying smoothing to the periodogram 
to eliminate random fluctuations and obtain spectral density estimates (Fig. 5). 

 

Figure 2 Periodogram of Log10 Monthly Average Sunspot Data 

The analysis was conducted using the STATISTICA statistical package. The following tasks were performed:  

• Calculation of the mean and standard deviation of the spectral density estimate (smoothed periodogram) and 
the weights used in smoothing. The smoothing was done using well-known windows in spectral estimation, 
specifically Daniell, Tukey, Hamming, Parzen, and Bartlett. 

• Plotting the unsmoothed (raw) periodogram on a log scale in Fig. 4 and applying smoothing to the periodogram 
to eliminate random fluctuations and obtain spectral density estimates (Fig. 5). 
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Figure 5 Spectral Density Estimates of Sunspot Average Monthly Data 

Table 1 presents the results of spectral density estimates of the monthly average sunspot data for comparison purposes. 
The summary statistics such as mean value, standard deviation, and weights are organized by spectral windows - 
Daniell, Tukey, Hamming, Parzen, and Bartlett. 

Table 1 Summary Statistics of Spectral Density Estimates of the Monthly Average Sunspot Data 

Spectral Windows Mean S.D. Weights 

Daniell 0.322289 1.006384 0.2000, 0.2000, 0.2000. 0.2000, 0.2000 

Tukey 0.322354 1.399481 0.0000, 0.2500, 0.5000, 0.2500, 0.0000 

Hamming 0.322342 1.285780 0.0357, 0.2411, 0.4464, 0.2411, 0.0357 

Parzen 0.322440 1.618444 0.0000, 0.1667, 0.6667, 0.1667, 0.0000 

Bartlett 0.322354 1.399481 0.0000, 0.2500, 0.5000, 0.2500, 0.0000 
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3. Discussion 

After carefully analyzing our results (Table 1), we have found that the performance of various windows is nearly 
identical for the monthly average sunspot series. However, it appears that the Daniell’s window is slightly better at 
estimating the spectral density function, as it has a smaller standard deviation. This indicates that the Daniell’s window 
is perhaps more precise and has less leakage compared to other windows. This can be seen in Fig. 5a. 

It is worth noting that the spectral analysis function drawings, which used spectral windows, clearly indicated the 
existence of a peak at iteration 𝐹 = 0.1 . This peak corresponds to a 10-month cycle, which means that our study 
discovered recurring patterns in the monthly sunspot data over 10 months. 

4. Conclusion  

We conducted study to assess the effectiveness of spectral windows in detecting the periodicity of monthly average 
sunspot data. Our study indicates that spectral windows are capable of capturing the dominant periodic components of 
sunspot data. However, the choice of spectral window size plays a crucial role as different sizes capture different 
periodicities. Further studies are required to optimize the selection of spectral window sizes and explore the multi-scale 
nature of sunspot periodicity. 
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