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Abstract 

Modified polypropylene composites were obtained by incorporating both chopped glass and mineral fillers. The 
compositions prepared were characterized. Studies on melting and crystallisation behaviour of PP composites were 
carried out with the help of differential scanning calorimetry. Studies revealed that peak melting temperature of PP 
were slightly affected by the presence of chopped glass fibers and wollastonite in the entire composition range. Unlike 
the crystalline/amorphous systems, the peak melting temperature remained more or less unaffected in the composites. 
Wollastonite acted as nucleating agent and facilitated crystallization/ nucleating effect. 
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1. Introduction

Polypropylene (PP) is a widely utilized polymer, particularly known for its simple structure and versatility in injection 
molding applications [1, 2]. However, pure PP is seldom used due to its limited mechanical and thermal properties. To 
enhance its performance, it is often combined with various mineral fillers. These fillers are essential in industries to 
improve the mechanical strength, thermal stability, and overall dimensional integrity of the polymer [3-8]. Glass fibers 
have proven to meet the demands in automobiles because of their excellent strength, durability, thermal stability, and 
resistance to impact, friction, and wear. [9]. However, because of the inherent lower thermal conductivity and stability 
of these polymeric materials, their wide range of applications is restricted, especially where excellent heat dissipation 
and low thermal expansion are necessarily required [10]. In 2004, year Hadal performed DSC measurements on PE 
wollastonite hybrid composites and reported that reinforcement with wollastonite increases the starting crystallisation 
temperature and induces a shorter processing time in injection molding, and consequently affects the extent of 
crystallinity of the composite [11]. Thermal properties and mechanical properties are interdependent. As the 
crystallinity of PP is increased, modulus increased but strength and deformability decreased [12]. The effect of surface 
treatment of filler on nucleation is unpredictable [13-16].  

It has been observed that fillers with smaller particle size usually act as nucleating agent possibly due to aggregate 
formation. Crystallinity of PP significantly affects the mechanical properties of its inorganic filler composite. 
Crystallinity makes a material strong but brittle. It is the indication of amount of crystalline region in polymer w.r.t 
amorphous region.  

 However, the nucleation effect depends strongly upon filler type, its surface modification and surface area. [17,18]. The 
most prominent effect of particulate fillers on the crystalline structure of semi-crystalline thermoplastics is their ability 
to work as a nucleating agent [19]. By modifying the surface chemistry of the filler nucleation effect may be unaffected, 
increased or decreased [12-16]. On the other hand, smaller particle size has been observed to increase the activity of 
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CaCO3 as a nucleating agent, possibly due to aggregate formation [13]. The mechanical properties of PP/CaSiO3 
composites are significantly dependent on the crystal form and crystallinity of PP [20-27]. However, the nucleation 
effect differs strongly by filler type, particle size (i.e. surface area) and filler surface treatment. Presence of short fibers 
in a polymer matrix directly influences the morphological and thermal characteristics of the matrix. Addition of 
wollastonite to PBT enhances crystallization process in PBT-wollastonite composite [28]. A.S Luyt concluded that 
wollastonite particles promote β crystallization of PP matrix and the results were well documented for wollastonite and 
other mineral fillers as well [29-32].  

Particulate fillers have a prominent effect on the crystalline structure of semi crystalline thermo plastics. They have the 
ability to act as nucleating agents. By increasing crystallinity, modulus of PP increases and deformability decreases [33, 
34]. It shortens processing time in injection molding by acting as a nucleating agent [35-41]. 

2. Experimental 

2.1. Materials 

The materials used in this research included polypropylene (Repol grade 11MA) from Reliance Petrochemicals, 
characterized by a melt flow index of 11 g/10 min. The chopped E-glass fibers (T-480 grade) were provided by Nippon 
Electric Glass Co. Ltd., Malaysia. Wollastonite, specifically Fillex-11AB3 (surface treated), was supplied by Wolkem India 
Limited. The grafted polypropylene (OPTIM grade 425) used in the study was procured from Pluss Polymers, Gurgaon, 
while the impact modifier (Engage 8200) came from Polmann India Ltd., Bahadurgarh, Haryana.   

2.2. Preparation of Composites 

Hybrid composites of PP reinforced with chopped glass fibers and wollastonite were prepared by using melt mixing 
technique in a single-screw extruder. The composites were prepared by one step process technique of melt 
compounding. The PP composites with gPP and with both gPP and impact modifier were prepared as per the 
compositions given in Table 1.  

2.3.  Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) analysis were performed on a Mettler Toledo DSC 1 Stare thermal analyser in 
nitrogen atmosphere. The samples (approximately 2-5 mg each) were heated from 0 to 300°C at a heating rate of 10°C/ 
min. After that, they were rapidly cooled to 30°C at a rate of 10°C/ min. The samples were further heated from 30 to 
300°C at a rate of 10°C/min in order to obtain the melting endotherms.  

From the DSC curves, the melting (Tm) and crystallization (Tc) temperatures were determined as the maxima of the 
corresponding fusion and crystallization peaks. ∆TC., crystallisation peak width gives overall crystallisation. ∆Tm is the 
melting peak width explains the overall fusion. Δ HC, heat of crystallisation explains the extent of crystallization. ΔHm is 
the heat of fusion. The reported values of the melting and the crystallization enthalpies (∆Hm and ∆Hc respectively) were 
estimated by dividing the areas under the peaks with the mass fraction of the PP in the composites. t1/2 is half the time 
for crystallisation. Smaller the t1/2, faster crystallisation becomes. 

Table 1 Compositions 

Composite 
name 

Composite code  

PP/GF/WF/gPP/IM 

PP (% by 
weight) 

GF (% by 
weight) 

WF(% by 
weight) 

gPP (% by 
weight) 

IM (% by 
weight) 

A2 70/30/0 70 30 0 - - 

A3  70/20/10 70 20 10 - - 

A4  70/15/15 70 15 15 - - 

A5  70/10/20 70 10 20 - - 

A6 70/0/30 70 0 30 - - 

B2 65/30/0/5 65 30 0 5 - 

B3 65/20/10/5 65 20 10 5 - 

B4 65/15/15/5 65 15 15 5 - 
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B5 65/10/20/5 65 10 20 5 - 

B6 65/0/30/5 65 0 30 5 - 

C2 60/30/0/5/5 60 30 0 5 5 

C3 60/20/10/5/5 60 20 10 5 5 

C4 60/15/15/5/5 60 15 15 5 5 

C5 60/10/20/5/5 60 10 20 5 5 

C6 60/0/30/5/5 60 0 30 5 5 

3. Results and Discussion 

3.1. Melting studies of PP/GF/WF, PP/GF/WF/gPP and PP/GF/WF/gPP/IM hybrid composites 

The melting endotherms and cooling exotherms of pure PP, PP/GF/WF, PP/GF/WF/gPP and PP/GF/WF/gPP/IM hybrid 
composites are presented in figures 1-3 respectively. The results obtained from the analysis of these thermograms are 
given in table 2 for their melting characteristics. The melting endotherms of pure PP, PP/GF/WF hybrid composites 
with A2 (30% GF), A3 (20% GF 10% WF), A4 (15% GF 15% WF), A5 (10% GF 20% WF) and A6 (30% WF) showed one 
peak melting temperature of 165.4, 160.5, 160.2, 158.7, 161.5, 159.9 degree Celsius respectively each corresponding to 
that of the pure component. Thus, we can conclude that the single melting point peak and approximately same peak 
melting temperatures of all hybrid composites suggest no intermolecular bonding.  

 

Figure 1 DSC Heating Scans for PP/GF/WF hybrid composites 

 

Figure 2 DSC Heating Scans for PP/GF/WF/gPP hybrid composites 

From the melting characteristics of PP as observed from the heating scans, the peak melting temperature of PP is only 
slightly affected by the presence of chopped glass fibers and wollastonite in the entire composition range. Unlike the 
crystalline/amorphous systems, the peak melting temperature remains more or less unaffected in the composites. Even 
the addition of grafted PP or both matrix modifier and impact modifier have no effect on the peak melting temperature 
of the hybrid composites. 
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Figure 3 DSC Heating Scans for PP/GF/WF/gPP/IM hybrid composites 

 

Table 2 Melting Characteristics of PP in the Hybrid composites 

Composite code 

PP/GF/WF/gPP/IM 

Onset of 
melting 

Peak Melting 
temperature Tm 

Endset of 
melting 

ΔTm 

 

ΔHf 

 

%Xc Increase or 
decrease in % Xc 

PP 154.5 165.5 164.9 10.4 74.6 35.7  

70/30/0/0/0 154.6 160.5 159.9 5.3 71.7 34.3 -1.4 

70/20/10/0/0 152.9 160.2 157.9 4.7 68.4 32.7 -3.0 

70/15/15/0/0 150.4 158.7 154.8 4.3 73.8 35.3 -0.4 

70/10/20/0/0 155.1 161.5 160.0 4.9 76.1 36.4 +0.7 

70/0/30/0/0 153.9 159.9 158.4 4.6 79.1 37.8 +2.14 

65/30/0/5/0 155.0 160.5 159.6 4.6 72.2 34.5 -1.2 

65/20/10/5/0 154.2 159.9 158.8 4.6 80.1 38.3 +2.6 

65/15/15/5/0 154.8 160.7 159.5 4.7 79.6 38.1 +2.4 

65/10/20/5/0 155.1 161.5 159.5 4.3 70.6 33.8 -1.9 

65/0/30/5/0 155.7 161.6 160.5 4.8 61.2 29.3 -6.4 

60/30/0/5/5 155.4 160.9 159.7 4.3 68.2 32.6 -3.1 

60/20/10/5/5 154.5 160.6 158.9 4.4 79.9 38.2 +2.5 

60/15/15/5/5 155.3 161.1 159.6 4.3 66.3 31.7 -4.0 

60/10/20/5/5 156.1 161.5 160.3 4.1 63.1 30.2 -5.5 

60/0/30/5/5 156.3 162.0 160.5 4.3 68.4 32.7 -3.0 

As observed in the table 2 blending affects slightly, the peak melting temperature of PP. However, the percent 
crystallinity of PP was affected and increased as percentage of wollastonite increased. At 30% wollastonite, a slight 
improvement in % crystallinity of PP has been observed. In addition, the melting temperature range (ΔTm) of pure PP 
was affected to a large extent with addition of fillers.  

Pure PP exhibits the widest melting temperature range of 10.4˚C, which decreases with the addition of fillers. A narrow 
range of melting of PP indicates a narrow crystallite size distribution in presence of wollastonite. The slight increase in 
crystallinity of PP when 30% wollastonite is added, explains the nucleation effect of wollastonite on Polypropylene.  
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Furthermore, heat of fusion of composites increases from that of their respective pure components. This is indicative of 
some interaction of the components. Zhu and Reinsch have also reported that smaller particle size of filler usually acts 
as nucleating agent possibly due to aggregate formation [11, 12].  

Values for heat of fusion are least for the C set of compositions with both grafted PP and impact modifier. Furthermore, 
when we compare the compositions of hybrid composites PP/GF/WF/gPP and PP/GF/WF/gPP/IM. The addition of 
grafted PP and impact modifier has not resulted in any major alterations in the peak melting temperature, melting 
temperature range and heat of fusion. For compositions having grafted PP, % crystallisation decreases. This is attributed 
to the increase in molecular mass, which results in lesser mobility and as a result, lesser polymeric chains available for 
crystallisation. This means that degree of mixing has no effect on melting behaviour of PP.           

3.2. Crystallisation studies of PP/GF/WF, PP/GF/WF/gPP and PP/GF/ WF/gPP/IM hybrid composites 

Table 4 and Figures 4-6 present the cooling characteristics of pure PP and the crystallization exotherms of hybrid 
composites of PP/GF/WF, PP/GF/WF/gPP and PP/GF/WF/gPP/IM. Pure PP exhibits a prominent crystallisation 
exotherm at approximately 1160C. When cooled from the melt, the hybrid composites PP/ GF/WF showed one 
exothermic peak corresponding to PP. Therefore, it is inferred that an increase in crystallization temperature of 
approximately 2-30C for PP has been observed on addition of glass fibers and wollastonite.  

Moreover, the peak crystallisation increases further approximately 5 degrees more when grafted PP and impact 
modifier are added to the compositions. The heat of crystallization value of PP decreases significantly in the presence 
of fillers. The ΔTc of PP increased in the presence of chopped glass fibers and wollastonite fillers indicating a wider 
crystallite size distribution. However, the behaviour is different for the A4 composition (15% wollastonite, 15% glass 
fibers), which also exhibits a co-continuous morphology. The largest value of ΔTc has been observed in this case.  

The cooling characteristics of PP hybrid composites (Table 4) show an increase in peak crystallization temperature by 
approximately 30C which is further increased by another 50C for addition of only grafted PP and grafted PP + impact 
modifier 

 

Figure 4 DSC Cooling Scans for PP/GF/WF hybrid composites 

 

Figure 5 DSC Cooling Scans for PP/GF/WF/gPP hybrid composites 
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Figure 6 DSC Cooling Scans for PP/GF/WF/gPP/IM hybrid composites 

 

Table 4 Cooling Characteristics of PP in the Hybrid composites 

Composite code 

PP/GF/WF/gPP/IM 

Onset of 
crystallisation 

Peak Crystallisation 
temperature Tc 

Endset of 
crystallisation 

ΔTc 

 

ΔHc 

 

t12/ ∆T= 
(TM-

TC) 

PP 120.2 116.0 124.9 4.7 97.7 0.4 49.5 

70/30/0/0/0 123.1 118.5 131.1 8.0 78.5 0.5 42.0 

70/20/10/0/0 122.5 118.1 131.5 9.1 70.9 0.4 41.7 

70/15/15/0/0 121.5 117.3 133.0 11.5 77.1 0.4 41.4 

70/10/20/0/0 122.8 118.6 130.0 7.2 78.2 0.4 42.9 

70/0/30/0/0 122.6 118.4 130.3 7.8 71.8 0.4 41.4 

65/30/0/5/0 124.2 120.6 131.7 7.5 70.5 0.4 40.0 

65/20/10/5/0 122.2 117.7 129.5 7.3 82.1 0.4 42.1 

65/15/15/5/0 125.1 121.7 133.1 8.0 75.1 0.3 39.1 

65/10/20/5/0 125.5 122.3 132.2 6.7 70.2 0.3 39.2 

65/0/30/5/0 126.1 122.3 132.7 6.7 63.9 0.4 39.3 

60/30/0/5/5 124.4 120.8 130.9 6.5 68.8 0.4 40.0 

60/20/10/5/5 125.1 121.8 133.0 7.9 79.8 0.3 38.7 

60/15/15/5/5 124.9 121.5 131.8 7.0 77.6 0.3 39.6 

60/10/20/5/5 126.2 122.9 132.1 5.9 72.3 0.3 38.6 

60/0/30/5/5 126.5 123.1 132.5 6.1 68.5 0.3 38.9 

The ΔTc is reduced significantly when both impact modifier and grafted PP are added to the compositions. 

In case of A (PP/GF/WF) compositions, the t1/2 is decreasing slightly with the increase in volume fraction of wollastonite, 
indicating increase in rate of crystallisation. Degree of supercooling also decreases in this favour. Like the ΔHF is 
maximum when relative wollastonite fraction is maximum. Similar trend is observed in case of crystallization which 
explains that wollastonite is acting as nucleating agent because an increase in peak crystallization temperature due to 
any of the components indicates a facilitation of crystallization/nucleating effect of the second component. TC remains 
almost same for all compositions. t1/2 is decreasing slightly with increase in wollastonite, means that wollastonite 
enhances the crystallisation rate. In case of B compositions (with grafted PP) and C compositions (with grafted PP and 
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impact modifier) crystallinity decreases. This might be attributed to decreased mobility of polymer chains as a result of 
increased molecular mass.  

4. Conclusions 

Wollastonite fibers were found to enhance the percentage crystallinity in PP thus wollastonite fibers have nucleation 
effect on PP. Addition of both grafted PP and impact modifier reduces ∆TC and crystallinity due to decrease in the 
mobility of polymer chains. 
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