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Abstract 

This study explores the usefulness of machine learning methods to predict well-log data in the Niger Delta, a geologically 
complex region that poses challenges for traditional prediction methods. The research specifically compares the 
effectiveness of various machine learning models, including Linear Regression (LR), k-Nearest Neighbors (KNN), 
Random Forest (RF), Gradient Boosting Regressor (GBR), and the traditional Gardner's equation. The models were 
evaluated based on their performance metrics, including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), 
and R-squared (R²) scores. The results indicate that machine learning models, particularly the tree-based models (R² 
scores above 0.90, MAE and RMSE scores below 0.05), outperform Gardner's equation (R² scores below 0.30, MAE and 
RMSE scores above 0.1) in predicting density logs, signifying higher accuracy and robustness. The study also underlines 
the importance of data quality, the selection of appropriate models, and the need for hyperparameter optimization to 
improve model performance. The results indicate that the incorporation of sophisticated machine learning models into 
exploration workflows can significantly improve subsurface predictions, thereby boosting exploration effectiveness and 
success rates within the Niger Delta. This study gives valuable insights into the potential of machine learning in 
geophysical applications and offers practical recommendations for the adoption and implementation of these 
techniques in the oil and gas industry. The research emphasizes the need for ongoing efforts and partnerships to 
enhance the use of machine learning techniques in predicting well-log data, to optimize hydrocarbon exploration in 
various geological contexts. 
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1. Introduction

Petroleum exploration and production in the Niger Delta are vital to Nigeria's economy, supported by tools like well 
logs, which measure properties such as electrical, nuclear, acoustic, and seismic characteristics essential for analysing 
subsurface geology [23, 21]. Density logs, in particular, play a critical role in estimating reservoir porosity and lithology, 
influencing hydrocarbon volume calculations. 

While traditional methods like Gardner’s equation [8] have been widely used due to simplicity, they often fail in 
geologically complex regions like the Niger Delta, highlighting the need for more advanced approaches. Machine 
learning, with its ability to model complex relationships and enhance predictive accuracy in large datasets, offers 
transformative potential in geosciences (14, 16, 20, 31, 32]. These techniques can improve well-log parameter 
predictions by uncovering patterns those traditional methods might miss. 

This study aims to explore machine learning models—such as linear regression, random forest, gradient boosting, and 
KNN regressors—to improve the accuracy of density log predictions in the Niger Delta. By comparing these models with 
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Gardner’s equation, the research seeks to determine the most effective approach for well-log prediction, ultimately 
contributing to more precise and efficient hydrocarbon exploration. 

1.1. Study Area 

The Niger Delta is a major hydrocarbon province located on the Gulf of Guinea's continental margin, spanning latitudes 
4° to 7°N and longitudes 3° to 9°E [17, 33]. 

 

Figure 1 Map of the Niger Delta region in Southern Nigeria [6] 

This delta, with its sedimentary fill from the Tertiary period, has been a key player in global energy supply for over 60 
years [21]. It covers over 300,000 square kilometres and features a sediment volume of 500,000 cubic kilometres with 
a thickness exceeding 10 kilometres at its deepest point [12, 15]. 

 

Figure 2 Stratigraphic column showing the three formations of the Niger Delta [25, 5] 

The delta’s Tertiary sequence comprises three primary formations: the Akata, Agbada, and Benin formations. The Akata 
Formation, the base unit, consists of marine shales and turbidite sands and is up to 7,000 meters thick [5]. The Agbada 
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Formation, which started forming in the Eocene, is the primary petroleum-bearing unit, consisting of deltaic siliciclastics 
and extending over 3,700 meters [1]. The Benin Formation, the topmost unit, is composed of alluvial and upper coastal 
plain sands up to 2,000 meters thick [1]. These formations reflect a history of complex sedimentation patterns, from 
tide-dominated to wave-dominated environments [24, 3]. 

1.2. Theoretical Background 

Traditional methods like Gardner's equation [8] have been widely used in the oil and gas industry to predict well-log 
parameters. This empirical formula relates seismic velocity to rock bulk density and is particularly valuable for 
estimating density logs in regions where direct measurements are unavailable. Gardner's equation [8] is favoured for 
its simplicity and ease of use. However, in geologically complex areas like the Niger Delta, where rock properties can 
vary significantly, its accuracy may be compromised. Despite these limitations, Gardner's equation [8] remains useful 
for hydrocarbon exploration due to its simplicity and quick estimates. 

Machine learning, a subset of artificial intelligence, enables systems to autonomously improve prediction accuracy by 
analysing historical data without explicit programming for specific tasks [27]. By building models from training data, 
machine learning algorithms can predict outcomes or make decisions, with some techniques, like neural networks, 
mimicking the brain's functioning [18]. Machine learning has been applied in various fields, including medicine, speech 
recognition, and computer vision, particularly where traditional algorithms fall short [13]. In geosciences, its use has 
grown rapidly over the past decade in areas like reflection seismology, petrophysics, and remote sensing. In the Niger 
Delta, accurate well-log predictions are crucial for improving hydrocarbon exploration, making the comparison of 
machine learning models vital for selecting the best approach to predict density logs. 

2. Literature Review 

Bougher [2] applied supervised and unsupervised machine learning models to geophysical data analysis, achieving a 
67% success rate in predicting stratigraphic units from gamma-ray logs. The study also explored reframing pre-stack 
seismic data analysis as an unsupervised machine learning problem, improving reservoir segmentation. Xie et al. [34] 
compared machine learning algorithms for lithology classification using well-log data, finding Gradient Tree Boosting 
and Random Forest to be the most effective models. Dell’Aversana et al. [4] combined geophysical methods with 
machine learning for risk mitigation in exploration, focusing on two regions, including Nigeria's deep offshore. Syed & 
Neghabhan [28] reviewed the rising influence of AI and ML in geosciences, particularly in shale reservoir development, 
noting their efficiency in automating tasks. Syed et al. [29] highlighted AI’s role in improving reservoir modelling 
accuracy through vast data analysis. LeCompte et al. [19] used AI to predict logs in real-time during drilling in the Gulf 
of Mexico, achieving a close match with conventional methods, and enhancing cost-effectiveness and operational safety. 
Finally, Tahiru et al. [30] demonstrated that gradient-boosting regressor outperforms traditional methods in predicting 
sonic logs, offering higher accuracy across various geological contexts.  

3. Material and methods 

3.1. Data Collection 

The data for this study consist of well logs from four wells in the X-Field of the Niger Delta. Predictor variables were 
chosen based on their relationship with the target variable, formation density, to enhance model performance. These 
predictors include measured depth, gamma ray, resistivity (deep), sonic velocity, and neutron logs. The target variable 
for the study is the density of the formation layers. Data pre-processing steps included cleaning the data to remove null 
values (-999.25), concatenating well data to generate the train set, and converting the sonic log from interval transit 
time to velocity, which was then used to calculate the density using Gardner’s equation. 

3.1.1. Gardner's Equation 

Gardner's equation [8] is an empirical relationship between seismic velocity (often derived from sonic logs) and bulk 
density. The equation is given by [8]: 

𝜌 = 𝐾 × 𝑉𝑝
𝑛 ………….(eq.1) 

Where ρ is the Bulk density (g/cm³); 𝑉𝑝 is the P-wave velocity (ft/s or m/s); K and n are constants. For velocity measured 

in metres per second (m/s): K≈0.31 and n≈0.25. For velocity measured in feet per second (ft/s): K≈0.23 and n≈0.25 
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The P-wave velocity is calculated from the interval transit time (Δt) provided by the sonic log as [8]: 

𝑉𝑝 =  
1

∆𝑡
 ×  106 ………………(eq.2) 

Using the calculated P-wave velocity in Gardner’s equation allows the estimation of bulk density, with adjustments for 
lithology by selecting or calibrating appropriate K and n values. 

3.1.2. Machine Learning Algorithms 

Linear regression models assume a linear relationship between the target variable y and a vector of predictors x [22]. 
It is a straightforward and computationally efficient method that fits a linear equation to the data, making it widely used 
in predictive modelling [9]. However, its reliance on linearity can restrict its ability to capture complex patterns. 

Random Forest is an ensemble learning method that combines predictions from multiple decision trees. It uses a voting 
mechanism for classification and averaging for regression, enhancing prediction stability and accuracy. Key 
hyperparameters include the number of trees, minimum samples for splitting a node, and tree depth [10]. 

Gradient Boosting trains models iteratively, minimizing a specified loss function (e.g., mean squared error) at each step 
using gradient descent. Each successive model improves on the errors of the previous ones, creating a robust ensemble. 

K-Nearest Neighbors predicts a target value or class by averaging or voting based on the K-nearest neighbors, identified 
using metrics like Euclidean or Manhattan distance. It is particularly versatile, with metrics such as Hamming Distance 
allowing for comparisons involving strings or Boolean data. This simplicity and adaptability make KNN effective across 
various problem types.  

4. Results and discussion 

4.1. Data Analysis 

The data analysis phase begins with a detailed overview of the dataset. The distribution of facies in the dataset 
comprises 41,898 data points with a significant imbalance of over 25,000 data points for shale, compared to 
approximately 8,000 data points each for sandstone and sandy shale. This imbalance can introduce bias into model 
performance. To address this, the dataset was resampled: the shale facies were downsampled to 15,000 units, and the 
other facies were upsampled to 15,000 units each. 

4.1.1. Correlation matrix 

The correlation matrix (figure 3) reveals that measured depth and sonic logs have strong correlations with the density 
log, making them crucial for model performance. Gamma-ray and neutron logs show weaker correlations but still play 
a role due to the complex geology of the Niger Delta. Resistivity logs show no significant correlation with the density log 
and can be excluded from the model without affecting predictions. 
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Figure 3 Correlation matrix of the dataset set features 

4.2. Model Performance 

The dataset was divided into train and test sets with a split an 80/20 split. The performance of each model is evaluated 
using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R² values to identify the most 
accurate model for predicting density logs in the Niger Delta.  

4.2.1. Linear Regression 

Linear Regression serves as a baseline model in this study, offering a straightforward and interpretable method for 
predicting well-log data. It captures some linear relationships between input features and the target variable, as shown 
by moderate evaluation metrics. However, its performance is limited by its inability to model non-linear patterns, 
resulting in a lower R-squared value compared to more complex models. The coefficients indicate that depth and sonic 
logs are the most influential contributors to the model's performance. 

Table 1 Model Performance Evaluation for Linear Regression 

 R² MAE RMSE 

Train 0.74 0.06 0.08 

Validation 0.75 0.06 0.08 

Test 0.57 0.06 0.08 
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Figure 4 Scatter plot of actual density against predicted density for Linear Regression 

4.2.2. Random Forest 

The Random Forest model outperforms Linear Regression by effectively capturing non-linear relationships and 
interactions between features, resulting in lower error values and higher R-squared scores. Feature importance analysis 
shows that the model prioritizes resistivity, porosity, and depth logs as key predictors for the density log. The model 
exhibits consistent performance across cross-validation folds, highlighting its robustness and reliability. 

Table 2 Model Performance Evaluation for Random Forest 

 R² MAE RMSE 

Train 0.997 0.004 0.008 

Validation 0.981 0.011 0.021 

Test 0.965 0.011 0.023 

 

 

Figure 5 Scatter plot of actual density against predicted density for Random Forest 
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4.2.3. Gradient Boosting Regressor 

The Gradient Boosting model excels in predictive accuracy, achieving the lowest error values and highest R-squared 
scores among all models. Its iterative approach, which refines predictions by addressing residual errors from previous 
models, effectively captures complex data patterns. The model demonstrates flexibility across various geological 
formations and maintains consistent performance across different cross-validation folds, underscoring its robustness 
and reliability. 

Table 3 Model Performance Evaluation for Gradient Boosting Regressor 

 R² MAE RMSE 

Train 0.93 0.03 0.04 

Validation 0.92 0.03 0.04 

Test 0.89 0.03 0.04 

 

 

Figure 6 Scatter plot of actual density against predicted density for Gradient Boosting Regressor 

4.2.4. KNN Regressor 

The K-Nearest Neighbors (KNN) model, a non-parametric method, performs moderately in predicting well-log data. Its 
accuracy is highly dependent on hyperparameters like the number of neighbors and distance metric. KNN performs well 
with dense data but struggles in sparse regions. This sensitivity underscores the need for careful tuning and 
optimization to achieve optimal results. 

Table 4 Model Performance Evaluation for KNN Regressor 

 R² MAE RMSE 

Train 0.98 0.01 0.02 

Validation 0.95 0.02 0.03 

Test 0.90 0.02 0.04 
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Figure 7 Scatter plot of actual density against predicted density for KNN Regressor 

4.2.5. Gardner’s equation 

The analysis shows that while Gardner’s equation provides a rough estimate of the target variable, its accuracy is 
significantly lower than the machine learning model outputs. The high error and low R-squared values indicate that it 
is not suitable for accurately predicting well-log data in complex geological settings. The comparison with machine 
learning models highlights the limitations of traditional empirical models and the potential of machine learning methods 
to provide more accurate and reliable predictions. 

Table 5 Performance Evaluation for Gardner’s Equation 

 R² MAE RMSE 

Train 0.26 0.11 0.13 

Validation 0.29 0.11 0.13 

Test 0.06 0.09 0.12 

 

 

Figure 8 Scatter plot of actual density against predicted density for Gardner’s Equation 
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Figure 9 Plots of the actual density against the predicted densities 

Figure 9 compares actual density logs with predictions from various models and Gardner's equation. Actual Density 
(Far Left Column) Provides the reference for comparison. Linear Regression (LR) Shows moderate agreement but 
notable deviations, especially in deeper sections. K-Nearest Neighbors (KNN) Captures the overall trend well with fewer 
deviations than LR, particularly in deeper sections. Random Forest (RF) Closely matches actual density logs with less 
variability and a smoother profile. Gradient Boosting Regressor (GBR) Strongly agrees with actual logs, smoothing out 
finer details while maintaining the overall trend. Gardner's Equation (Far Right Column) Displays significant 
discrepancies and a flat curve in lower sections, indicating limitations in capturing data variability. 

Table 6 summarizes model performance, showing that ensemble learning methods, specifically Random Forest and 
Gradient Boosting, outperform others in accuracy and robustness. Gradient Boosting stands out with the lowest MAE 
and RMSE values and the highest R-squared (R²) value, highlighting its superior performance in predicting well-log 
data. Its effectiveness in managing overfitting and robustness to outliers make it the most suitable model for well-log 
prediction. 

Table 6 Comparison of Model Performance Metrics 

Model MAE RMSE R² 

Linear Regression 0.06 0.08 0.57 

Random Forest 0.01 0.02 0.97 

Gradient Boosting 0.03 0.04 0.89 

K-NN 0.02 0.04 0.90 

Gardner’s Equation 0.09 0.12 0.06 
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4.2.6. Mean Absolute Error 

 

Figure 10 Comparison of Mean Absolute Error across the models 

Figure 10 shows that KNN and Random Forest (RF) have the lowest Mean Absolute Error (MAE) scores, indicating the 
most accurate predictions across all datasets. Gradient Boosting Regressor (GBR) also performs well but with slightly 
higher MAE compared to KNN and RF. Gardner's equation has the highest MAE, suggesting it is the least accurate method 
among those evaluated, with Linear Regression (LR) falling in between. 

4.2.7. Root Mean Squared Error 

 

Figure 11 Comparison of Root Mean Squared Error across the models 

Figure 11 shows that KNN and Random Forest (RF) have the lowest RMSE scores, indicating the highest predictive 
accuracy and smallest large errors across all datasets. Gradient Boosting Regressor (GBR) also performs well but with 
slightly higher RMSE compared to KNN and RF. Gardner's equation has the highest RMSE, making it the least accurate 
model, while Linear Regression (LR) shows intermediate performance. 
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4.2.8. Coefficient of Determination (R²) 

 

Figure 12 Comparison of R-squared across the models 

Figure 12 illustrates that KNN and Random Forest (RF) achieve the highest Coefficient of Determination (R²) scores, 
indicating they best capture the data's complexity. Gradient Boosting Regressor (GBR) also performs well but with 
slightly lower R² values compared to KNN and RF. Gardner's equation has the lowest R² scores, reflecting its lesser 
effectiveness in explaining data variance, while Linear Regression (LR) performs moderately better than Gardner’s 
equation but falls short of KNN, RF, and GBR. 

Overall, the charts show that machine learning models such as KNN, RF, and GBR outperform traditional methods like 
Gardner's equation in predictive accuracy. This is evidenced by their higher R² scores and lower MAE and RMSE values. 
These machine learning models more effectively capture underlying data patterns, resulting in more accurate 
predictions. 

5. Discussion 

The study reveals that machine learning models—K-Nearest Neighbors (KNN), Random Forest (RF), and Gradient 
Boosting Regressor (GBR)—significantly outperform the traditional Gardner's equation in predicting density logs. 
These models achieved lower Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) scores and higher R-
squared (R²) values, indicating better accuracy and fit to the actual data. RF and GBR were especially effective, with RF 
capturing complex patterns through its ensemble method and GBR achieving high accuracy with its iterative error-
minimizing approach. 

In contrast, Linear Regression (LR) showed limitations, with higher MAE and RMSE scores and a lower R² value, 
particularly struggling to capture the complex, non-linear relationships in the data. Gardner’s equation, while useful for 
quick estimates, was less accurate, as evidenced by its higher MAE and RMSE scores and lower R² value. Its predictions, 
especially at greater depths, showed significant deviations from actual logs. Overall, machine learning models are 
recommended for more accurate and reliable well-log predictions in complex geological settings like the Niger Delta. 

The findings from this study have significant implications for hydrocarbon exploration in the Niger Delta and similar 
regions. The superior predictability of the regression models over traditional methods suggests that these techniques 
can greatly enhance the accuracy of subsurface predictions, leading to more informed decision-making in exploration 
activities. Specifically, the use of RF and GBR models could improve the identification of hydrocarbon-bearing 
formations, optimize drilling operations, and reduce exploration risks.  

6. Conclusion 

The data analysis demonstrates the effectiveness of machine learning models, particularly Gradient Boosting, in 
predicting well-log data for the Niger Delta. These models outperform traditional methods like Gardner's equation by 
accurately capturing complex relationships between input features and target variables. The study highlights the 
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importance of feature selection and hyperparameter tuning in improving model performance, emphasizing that 
meticulous optimization can lead to significant gains in accuracy and robustness. Cross-validation is crucial for 
assessing the models' generalizability and reliability. Overall, the findings underscore the value of ensemble learning 
methods, such as Random Forest and Gradient Boosting, in enhancing well-log predictions and advancing hydrocarbon 
exploration in complex geological settings. 
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