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Abstract 

Advancements in artificial intelligence (AI) and Internet of Things (IoT) technologies have catalyzed the evolution of 
autonomous driving systems (ADSs), with image classification deep learning (DL) models serving as the cornerstone of 
their decision-making frameworks. Deep neural networks are employed in highly sophisticated and unforeseeable 
environments such as advanced industrial automation, autonomous vehicles, and financial forecasting. While these 
models excel in navigating complex driving scenarios, their susceptibility to adversarial attacks poses significant threats 
to operational safety and functional integrity. This study delves into the taxonomy of adversarial exploits, dissects 
cutting-edge defense mechanisms, and examines the delicate equilibrium between adversarial robustness and model 
generalizability. It accentuates the imperative for adaptive, resource-efficient, and scalable countermeasures capable of 
dynamic, real-time deployment while advocating for hybrid defense architectures and explainable AI (XAI) to foster 
system transparency and stakeholder trust. By addressing these systemic vulnerabilities through transferable defense 
strategies, universal countermeasures, and multidisciplinary collaboration, the study sets the stage for developing 
fortified ADSs capable of resilient operation in dynamically adversarial ecosystems. 

Keywords: Adversarial Attacks; Deep neural networks; Image Classification; Defense Mechanisms; Autonomous 
Driving System  

1. Introduction

Deep learning is an improvement over artificial intelligence and neural networks since multiple layers are stacked to 
achieve greater abstraction and improved information analysis compared to traditional machine learning algorithms. It 
is used to solve classification and regression problems that are impossible to solve quickly and is used in almost every 
industry: healthcare, finance, agriculture, gaming, etc. It transforms data into actionable insights, showcasing the 
technology's wide-ranging potential across various industries. There is constant upgrading being made in various 
libraries, frameworks, and hardware resources by making them available to the community promptly. Ongoing 
advancements and performance breakthroughs enable us to achieve these improvements through deep neural 
networks (DNN). Deep neural networks are used for pattern recognition, data classification, function estimation, 
predictive analytics, feature extraction, signal processing, and automation. With its capability to process intricate data 
and identify patterns, it is now utilized to address critical safety and security challenges, including autonomous vehicles, 
multi-agent aerial systems equipped with facial recognition, robotics, social engineering detection, network anomaly 
identification, and deep packet analysis. Deep neural networks have become integral to daily life, driving innovations 
such as virtual assistants, chatbots, autonomous driving, and tailored recommendation systems. 

Due to the rapid advancements in the field of autonomy, particularly in autonomous driving technologies (ADS), vehicles 
can now navigate and make decisions without requiring human intervention. The technologies comprise LIDAR (light 
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detection and ranging), RADAR (radio detection and ranging), computer vision and cameras, artificial intelligence, and 
machine learning, deep learning and neural networks, sensor fusion, etc. to determine road conditions. It effectively 
contributes towards the development of autonomous vehicles to understand their surroundings, make informed 
decisions, minimize human error, and navigate through sophisticated environments. Companies such as Tesla, Uber, 
Nvidia, and Rivian are making substantial contributions to the advancement of autonomous driving systems (ADS) and 
have created a supportive environment for commercializing these systems. Most of these advancements currently 
operate at level 3 autonomous driving (AD) technology, allowing for conditional automation under specific conditions, 
such as a car that can drive itself on highways but requires the driver to take over in complex situations like city traffic 
or poor weather. However, various challenges regarding safety and reliability have risen due to the Swift adaptation of 
ADSs and have raised significant concerns in advancing this technology and have become obstacles to achieving fully 
autonomous, level-five self-driving technology. If the image classification deep learning model is susceptible to 
adversarial attacks, we may face some serious consequences, which may result in poor driving and inaccurate scene 
evaluation. This could have catastrophic driving implications. Therefore, protecting image classifiers in autonomous 
driving systems from adversarial attacks is crucial for maintaining their effectiveness and reliability. 

Due to its substantial implications in emerging IoT technology, it has paved the way for the creation of a smart driving 
environment. The increasing need for advanced data processing abilities in autonomous driving systems (ADS) aligns 
with the rising number of IoT-enabled intelligent devices, such as smart traffic lights (they can adjust their timing based 
on real-time traffic framework), smart traffic signs (they provide fluid information to drivers about road conditions and 
the possibility of incidents), and smart signboards (which can display real-time updates on traffic patterns and 
emergencies), all of which have significantly enhanced environmental awareness among ADS, allowing them to 
effectively communicate with their surroundings and make informed driving decisions. Ensuring that there is adequate 
safety and robustness of interconnected systems within the driving environment is of great importance since an attack 
on data integrity can jeopardize the safety and dependability of ADSs. As a result, reducing vulnerability to hostile 
attacks is a key goal. As it can help strengthen defenses against potential threats, improving security measures can build 
trust among users, clients, and stakeholders and help identify and manage risks more effectively. Eventually, an active 
strategy is necessary to reduce vulnerability for sustainable growth and success in a challenging business environment. 

Image classification deep learning models are crucial since they are used for behavior analysis of fixed and mobile 
entities in driving settings, effectively contributing towards informed real-time driving decisions. However, one major 
issue arises that makes it difficult to ensure the reliability of these models: their vulnerability to adversarial attacks. 
These attacks can intentionally manipulate the models by altering their parameters (weights and biases) or by 
introducing harmful inputs, which can lead to incorrect interpretations of the driving environment and potentially 
dangerous decision-making by overlooking critical information and miscalculating distances, ultimately jeopardizing 
the safety of autonomous driving systems. Modifying the model’s parameters is usually known as a “model poisoning 
attack.” This attack highlights the importance of secure measures that need to be taken across various levels since 
modifications may be inconspicuous to humans but can greatly affect the safety and reliability of deep learning models. 
Several challenges are presented in mitigating the vulnerabilities of image classification deep learning models to 
adversarial attacks across various industries, and these challenges include the difficulty of identifying subtle 
manipulations that can deceive the models, the need for robust training methods that can withstand such attacks, and 
the requirement for ongoing monitoring and updating of the models to ensure they remain resilient. One of the major 
is the adaptability of adversaries, who constantly adjust their methods to bypass existing defenses. This adaptability, 
when combined with numerous attack avenues, including various methods such as adversarial example generation, 
evasion attacks, and model poisoning, complicates the prediction and defense against emerging threats. Adversarial 
example generation involves subtly altering the input data to trick the model without being noticeable to humans. 
Evasion attacks target exploiting vulnerabilities during their decision-making phase, enabling adversaries to alter 
inputs and get wrong predictions. Model poisoning, on the other hand, involves injecting malicious data during the 
training phase to disrupt the model's learning. The combination of these different attack strategies, alongside the 
dynamic nature of the driving environment, makes it very challenging to anticipate and defend against new threats 
effectively. 
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Figure 1 Types of adversarial attacks and countermeasures  

Improving the robustness of deep learning models can sometimes lead to decreased accuracy on legitimate inputs, 
making it even more difficult to develop effective defense mechanisms. For example, when a model is trained to resist 
adversarial attacks, it might become overly cautious, resulting in misclassifications of normal data. Additionally, the 
black-box nature of deep learning models creates challenges in interpretability and explainability, making it difficult to 
identify and address adversarial vulnerabilities such as model overfitting, lack of transparency, transferability of 
attacks, model complexity, etc. These mechanisms are hard to comprehend, especially for those that use low-norm 
perturbations. For instance, barely noticeable changes to an image - like adjusting pixel values in a way that is invisible 
to the human eye can significantly impact the model's predictions during inference. This makes it very challenging for 
humans to detect potential dangers, as the changes may not be immediately evident, yet they can lead to serious errors 
in the model's performance by misidentifying a stop sign as a caution sign, which poses safety risks for autonomous 
driving. Therefore, the trade-offs in robustness, the difficulty in understanding the model, and the subtlety of attack 
methods make it challenging to effectively address vulnerabilities.  

To better understand and explain the causes of misclassification in image classification-based deep learning models for 
autonomous driving systems, we can visualize the effects of adversarial examples in relation to the decision boundary. 
This vulnerability exposes a significant robustness problem in neural network models. Robustness is defined by how 
easily adversarial examples x′ can be found near their original inputs. This raises critical concerns regarding the safety 
and reliability of systems built upon neural network components, particularly in light of their susceptibility to security 
threats.  
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Practically speaking, a robust model aims to minimize the gap between its decision boundary and the ideal Task 
boundary, thereby limiting an attacker’s ability to generate adversarial examples. As illustrated in Fig. 1b, the decision 
boundary of the robust model, represented by the green line, closely aligns with the Task boundary, effectively reducing 
the potential for successful adversarial attacks. This alignment demonstrates the importance of developing robust 
defenses to enhance the security and reliability of deep learning models in autonomous driving systems. 

 

Figure 2 Robustness of neural network models and the role of their decision boundary. A robust model limits the 
space that an attacker can exploit, for crafting adversarial samples [3] 

During the development process of AVs, deep learning plays a significant role due to the vast amount of data collected 
and the complex tasks involved in interpreting that data.  

 

Figure 3 Autonomous vehicles (AVs) process various inputs using deep learning models and control units to perform 
various tasks 

An autonomous vehicle (AV) gathers data from sensors and systems: Cameras capture images for object detection and 
lane marking. Lidar generates 3D maps of the environment. Radar detects the speed and distance of nearby objects, 
working well in all weather. Ultrasonic sensors assist in close-range detection, useful for parking. GPS and IMU provide 
precise location and movement tracking. Onboard Data Storage holds sensor data for real-time processing. Security 
operations protect data and system integrity. Cloud connectivity enables real-time updates and map sharing. Path 
planning calculates safe, efficient routes based on sensor data. These components allow AVs to perceive their 
surroundings, make decisions, and safely control movements. 
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2. Research Methodology 

This research paper aims to study various aspects of adversarial robustness in autonomous driving systems (ADSs), 
focusing on the vulnerabilities of deep learning (DL) models integral to tasks such as object detection, semantic 
segmentation, and image classification. The paper delves into the taxonomy of adversarial attacks, categorizing them 
into knowledge-based approaches (white-box and black-box), intent-based strategies (targeted and untargeted), and 
location-based techniques (evasion and poisoning). Additionally, it explores the corresponding defensive mechanisms, 
including proactive methods like adversarial training and feature denoising, and reactive strategies such as anomaly 
detection and input filtering during inference. 

The study also examines the challenges associated with implementing these defenses, particularly in balancing 
robustness with model generalizability and ensuring scalability in real-time applications. Emerging trends, such as 
hybrid defense frameworks combining proactive and reactive approaches, the adoption of explainable AI (XAI) for 
enhancing transparency, and the development of universal countermeasures, are also highlighted. By identifying key 
research gaps, such as the lack of standardized evaluation frameworks and limited exploration of cross-modal attacks, 
this research aims to contribute to the advancement of adaptive, scalable, and resilient ADSs capable of operating 
securely in adversarial dynamic environments. 

3. Adversarial Attacks against Image Classification Deep-learning models in Autonomous Driving 
Systems  

Deep learning models segment, analyze, and classify visual objects within driving environments. Object detection, 
semantic segmentation, and image classification models rely heavily on autonomous driving systems (ADS). These 
models play a major part in executing framework usefulness and forming intuition with the physical world. However, 
this review will specifically deal with evaluating potential adversarial attacks and countermeasures that can affect the 
performance of image classification deep learning models. We will also investigate different countermeasures planned 
to fortify these models against such attacks, assessing their effectiveness, limitations, and the challenges associated with 
implementing robust defenses. By centering on both the nature of adversarial dangers and the advancing defense 
mechanisms, this review gives insights into the vulnerabilities of picture classification DL models and how they can be 
relieved to ensure more dependable execution in real-world applications.  

Deep learning models have emerged as a pressing concern, particularly in fields where reliability and security are 
paramount, and these attacks exploit weaknesses in model architecture, posing significant challenges to safe 
deployment. Due to the high dimensionality, complex highlights, linear separability, and constrained semantic 
understanding in picture information, tending to antagonistic vulnerabilities in DL models is fundamental to ensuring 
vigorous model execution. Table 1 gives a scientific categorization of existing attacks, categorizing them by perturbation 
scope, permeability, and measurement - key components of viable adversarial perturbations—highlighting areas where 
advanced improvements can mitigate rising threats. In Table 1, we display a scientific categorization of existing attacks, 
categorizing them based on the sorts of perturbation scope, visibility, and estimation, which are the fundamental 
features of a well-designed adversarial perturbation.  

The Perturbation Scope represents the degree or greatness of malicious alteration to an input image in an adversarial 
setting. Here, we take into account universal and individual perturbations. Universal perturbations refer to unobtrusive, 
imperceptible changes made to distinctive inputs to trick a DL model. This perturbation is broad because it is 
consistently applied to various inputs. For instance, a universal perturbation could involve adding a nearly invisible 
noise pattern to all stop sign images, making the model consistently misinterpret stop signs as yield signs, regardless of 
the specific image of the stop sign used. This type of perturbation demonstrates a wide scope, as it generalizes across 
different inputs, fooling the model in a repeatable way without needing to customize the perturbation for each image. 
On the contrary, individual perturbations are designed to alter the model’s behavior for a specific target input. The scope 
of this perturbation is more constrained, concentrating on just one input or a particular feature of an input. It is designed 
to exploit the targeted input’s vulnerabilities or unique properties. For example, an individual perturbation might 
slightly modify a particular image of a pedestrian, causing the model to misidentify the pedestrian as an inanimate object 
or background. Since this perturbation is narrowly tailored to a single image or type of object, its scope is limited but 
highly precise, making it effective for specific targeted attacks.  

The Perturbation Perceptibility refers to how noticeable modifications to input data are, and it can be further 
categorized into three different types: optimal, visible, and physical visibility. Optimal Visibility: In this case, the changes 
made to the input data are imperceptible to both humans and deep learning (DL) models. For example, in an image 
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classification task, a small amount of noise might be added to an image of a stop sign that does not alter the visual 
appearance significantly but is enough to confuse a DL model, causing it to misclassify the sign as a yield sign. The 
perturbation is designed to be statistically similar to the original input, optimizing the adversarial effect while remaining 
unnoticed. Visible Perturbations: These modifications are intentionally made to be noticeable to human observers but 
may still present challenges for DL models. An example could be adding graffiti or stickers on a traffic sign. While 
humans can see the graffiti and understand the context, the modifications might confuse a DL model that observers but 
may still present challenges for DL models. An example could be adding graffiti or stickers on a traffic sign. While 
humans can see the graffiti and understand the context, the modifications might confuse a DL model that relies on 
specific visual features for classification, potentially leading to incorrect predictions. Physical Visibility: In this scenario, 
the perturbations are perceptible to both humans and DL models, yet they can still deceive a well-trained network 
during inference. For instance, consider a situation where a person uses glasses or a projection to alter the appearance 
of a stop sign slightly; the modification can be seen by a human and detected by a DL system, but the specific features of 
the sign might be altered in a way that misleads the model into misclassifying it. 

The Perturbation Metric measures the strength and size of distortions applied to input data using various Lp-norms to 
assess the statistical distance or similarities between the original and altered inputs. The p-value can take values such 
as 0, 1, 2, or ∞, each serving a different purpose:  

• L0-Norm: This norm encourages sparsity in perturbations, which promotes making only a few changes to the 
input. This makes adversarial examples harder to detect. For instance, altering just a few pixels in an image of 
a stop sign can keep it looking mostly the same to human observers, enhancing the attack's effectiveness. 

• L1-Norm: This metric controls the overall magnitude of the perturbations by minimizing their total sum. While 
it encourages sparsity, it can be computationally intensive. An example is applying a subtle brightness change 
across an entire image while keeping the total increase low to remain undetected.  

• L2-Norm: The L2-Norm measures the size of perturbations in terms of Euclidean distance. By minimizing it, 
the added perturbations stay small, ensuring they are subtle. For example, slight color adjustments to an image 
of a pedestrian might be minor enough to go unnoticed by both models and human observers while still 
misleading the model.  

• L∞-Norm: This norm assesses the maximum change across all pixels in the relevant areas of two images, 
focusing on the most significant alteration. For instance, drastically changing one pixel in a stop sign image 
could trick the model into misclassification. These metrics help analyze and quantify the impact of 
perturbations on input data, providing insight into adversarial examples in deep learning models. 

Table 1 Taxonomy of Adversarial Attack Algorithms against Image-based Deep Learning Models [1] 

                     Attack Algorithm  Perturbation Scale  

   

Perturbation  

 Matrix 

Perturbation  

 Perceptibility 

 HOUDINI  Individual  L2, L∞   Optimal 

 Fast Adaptive Boundary (FAB) Attack  Universal  L1, L2, L∞   Optimal 

 ShapeShifter  Individual   L2  Optimal 

 D-BADGE Attack  Individual/Universal  L2   Optimal 

 Physical-world Robust Adversarial 

 Attack (PRAA) 

 Individual   L2  Physical 

 GenAttack  Individual  L2, L∞   Optimal 

 Robust Disappearance Attacks  Universal   L2  Physical 

 Adaptive Local Attack  Universal  L∞   Optimal/Physical 

 Adversarial Retroreflective Patch  

 (ARP) Attack 

 Individual/Universal   Custom  Optimal/Physical 

Gradient Norm Penalty (GNP) Attack  Universal  L∞  Physical 

Time-aware Perception Attack (TPA)  Individual/Universal   L1, L∞   Optimal/Physical 

Adaptive Square Attack   Universal   L1, L∞  Optimal 
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Soft-labeled Attack   Individual   L0, L1, L2   Optimal 

 Zeroth-Order Optimization (ZOO)  Individual/Universal  L2, L∞   Optimal 

 GhostStripe Attack   Individual/Universal  Custom  Visible 

 Multi-source Adversarial Attack Models   Universal  L∞  Optimal/Physical 

 Liu et al.   Universal   Custom   Physical/Visible 

 Cui et al.   Individual/Universal   L0, L1, L2, L∞  Optimal 

 OptiCloak   Individual/Universal   L∞  Physical 

 Lenticular printing Attack   Universal  L1, L2, L ∞   Optimal/Visible 

 Time-aware Perception Attack (TPA)  Individual/Universal  L1, L∞   Optimal/Physical 

 Adversarial Patch Attack on ADSs   Individual/Universal   L2, Custom  Physical/Visible 

 DeepBillboard   Individual/Universal  L2, Custom  Physical/Visible 

 PhysGAN   Individual/Universal   L2, L∞  Physical/Optimal 

 Physical One-Pixel Attack  Individual  L2  Optimal 

 Adversarial Patch Attack on ADSs   Individual/Universal   L2, Custom   Physical/Visible 

 Class Activation Mapping (CAM)   Individual  L2, L∞   Optimal 

 Scene Agnostics Adversarial Patch  

 Attack 

 Universal   Custom   Optimal/Physical 

 Translation Invariant-based Attack   Individual/Universal   L1, L ∞   Optimal 

 Maximal Jacobian-based Saliency Map 

 (JSMA) Attack  

 Individual  L0  Optimal 

 Dynamic Adversarial Attacks   Universal   L2  Physical 

 Scene-Specific Attacks   Universal  L∞   Visible/Physical 

 GenGradAttack   Individual   L2, L∞  Optimal 

 Out-of-distribution Attack  Universal  Custom   Optimal/Physical 

 ManiFool  Individual  L2  Optimal/Visible 

 L^1-Oriented Elastic-net Attacks to  

 DNNs  

 Universal  L1  Optimal 

 Carlini-Wagner (C&W) Attack  Individual  L0, L2, L∞  Optimal 

 Targeted Attention Attack (TAA)  Universal  L2  Physical 

 Pinpoint Region Probability Estimation 

 Network (PRPEN) 

 Individual/Universal   Custom   Optimal/Visible 

 Hierarchical Adversarial Attack (HAA)  Individual   L1,L2  Optimal 

 Robust Physical Perturbation (RP2)  Individual/Universal  Custom   Optimal 

 Adversarial Task-Transferable Attack   Universal   L2  Physical 

 Feature-aware Transferable Attack  Individual/Universal   L2  Optimal 

 Natural Light Illuminations-based  

 Attack 

 Individual  Custom  Visible 

Min- Max Optimization-Based Adversarial  

 Attack 

 Universal  L0,L2, L∞   Optimal 
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Spatially Transformed Network (stAdv) Universal Custom Optimal 

3.1. Types of Adversarial Attacks  

Adversarial attacks on deep learning models can be broadly classified into two categories: white-box and black-box 
attacks. This section focuses specifically on black-box adversarial attacks, analyzing their effects on image classification 
models utilized in ADSs. 

3.1.1. White Box Attack  

A white-box attack assumes the adversary possesses comprehensive knowledge of the target model and it’s insights, 
including its architecture, hyperparameters, and gradient information. This privileged access enables the deployment 
of sophisticated optimization techniques to generate adversarial perturbations that effectively compromise the model's 
performance. These attacks are frequently utilized by model designers to evaluate and verify the robustness of deep 
learning models. However, in real-world scenarios, such as Autonomous Driving Systems (ADSs), attackers rarely 
succeed with white-box attacks due to the impracticality of gaining full access to the model's architecture, parameters, 
and gradients. For example, an attacker attempting to mislead an ADS into misclassifying a stop sign as a speed limit 
sign would require detailed knowledge of the system’s neural network, which is rarely accessible in practical 
applications. 

3.1.2. Black Box Attack 

A black-box attack is a type of adversarial attack where the adversary possesses minimal or no knowledge about the 
internal architecture, parameters, or operational intricacies of the target system. Instead, the system is treated as a 
"black box," with the attacker relying on iterative querying and analyzing the system’s outputs to infer vulnerabilities 
and craft adversarial inputs. Black-box attacks are widely employed in penetration testing and vulnerability assessment 
of system networks. For instance, in an image classification model for biometric security, an attacker might iteratively 
generate synthetic images to bypass authentication without knowing the neural network's architecture or weights. 
Black-box attacks can be further categorized into Transfer based Attacks, Decision based Attacks, Score based Attacks 
and, Optimization based Attacks. 

Transfer Based Attacks. Transfer-based adversarial attacks exploit the transferability property of adversarial 
perturbations, enabling inputs crafted on a source model to deceive a target model, even without direct access attackers 
train a shadow model on a dataset approximating the target's, then use white-box techniques to generate optimized 
adversarial examples. These perturbations exploit shared vulnerabilities in decision boundaries, making them 
transferable across homogeneous and heterogeneous models. This method poses a significant security threat to real-
world systems like biometric authentication or autonomous vehicles. For example, an attacker might use a surrogate 
model trained on public datasets to create adversarial road signs that mislead an autonomous driving system (ADS). 
Techniques like gradient smoothing, intermediate layer perturbation (ILP), token gradient regularization (TGR), and 
adaptive image transformation learners (AITL) further enhance transferability, emphasizing the critical need for robust 
defensive measures. 

Table 2 Taxonomy of Adversarial Attack Algorithms against Image-based Deep Learning Models (Contd)[1] 

 Attack  Algorithm     

 Attack Scheme   

 Adversary’s 

 Intention 

Adversary’s 
Awareness 

Fast Adaptive Boundary (FAB) Attack Gradient Untargeted  WB 

HOUDINI  Gradient Targeted/Untargeted  BB 

Hierarchical Adversarial Attack (HAA)  Gradient Untargeted  WB 

Soft-labeled Attacks Gradient  Targeted  WB 

Lenticular printing Attack  Geometry  Targeted/Untargeted WB/BB  

Maximal Jacobian-based Saliency Map  

(JSMA) Attack  

Gradient  Targeted  WB 

Cui et al.  Gradient  Targeted/Untargeted WB 
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Translation Invariant-based Attack  Geometry  Targeted/Untargeted  WB  

Spatially Transformed Network (stAdv)  Geometry  Targeted  WB  

Adaptive Local Attack Geometry  Targeted/Untargeted  WB  

ManiFool  Geometry Targeted/Untargeted  WB  

Carlini–Wagner (C&W) Attack Optimization/ 

Gradient 

Targeted/Untargeted WB/BB  

GenGradAttack  Optimization  Targeted  BB 

Scene-Specific Attacks  Geometry  Targeted/Untargeted  WB  

Scene Agnostics Adversarial Patch Attack  Optimization/ 

Transfer  

Targeted  WB 

L1 -Oriented Elastic-net Attacks to DNNs Transfer  Targeted WB/BB  

Feature-aware Transferable Attack  Transfer  Targeted WB/BB  

Robust Physical Perturbation (RP2)  Transfer/Gradient  Targeted/Untargeted  BB/WB  

Natural Light Illuminations-based Attack Transfer/Geometric Targeted/Untargeted  BB/WB  

Min-Max Optimization-Based Adversarial  

Attack 

Optimization/ 

Gradient 

Targeted/Untargeted BB  

Pinpoint Region Probability Estimation  

Network  

Transfer  Targeted/Untargeted BB  

Gradient Norm Penalty (GNP) Attack  Gradient/Transfer  Untargeted  WB/BB  

Adversarial Task-Transferable Attack  

(ATTA)  

Transfer  Untargeted  BB  

Dynamic Adversarial Attacks  Transfer/Score Targeted/Untargeted  BB 

Targeted Attention Attack (TAA)  Transfer/Decision  Targeted BB 

PhysGAN  Transfer/Score Targeted/Untargeted  BB 

DeepBillboard Transfer  Targeted BB 

Adversarial Patch Attack on ADSs  Transfer/Score  Targeted  BB 

Liu et al.  Gradient/Transfer  Targeted/Untargeted  BB/WB  

Time-aware Perception Attack (TPA)  Score  Targeted/Untargeted  BB 

OptiCloak  Score/Gradient Untargeted  BB/WB  

Multi-source Adversarial Attack Models  Gradient/Score  Untargeted  BB/WB  

Out-of-distribution Attack  Decision  Targeted/Untargeted WB/BB 

GhostStripe Attack  Decision/Geometric Targeted/Untargeted BB/WB  

D-BADGE Attack  Decision  Targeted/Untargeted BB  

Class Activation Mapping (CAM)  Decision  Targeted  BB  

Zeroth-Order Optimization (ZOO)  Transfer/Score  Targeted/Untargeted BB/WB 

Physical One-Pixel Attack Transfer/Gradient  Targeted/Untargeted BB  

Adaptive Square Attack  Transfer/Score Targeted  BB/WB 

Adversarial Retroreflective Patch (ARP)  

Attack  

Score/Geometric Targeted/Untargeted  BB/WB 
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ShapeShifter  Decision  Targeted/Untargeted  WB  

Robust Disappearance Attacks  Decision  Targeted  WB/BB  

GenAttack  Decision  Targeted  BB  

Physical-world Robust Adversarial Attack 
(PRAA)  

Score  Targeted  BB  

Decision Based Attacks. Decision-based attacks are sophisticated adversarial techniques where attackers manipulate 
input data to induce misclassifications in a model, relying exclusively on the model's final output rather than its 
confidence scores or probability distributions. These attacks are highly targeted, leveraging techniques like Boundary 
Attacks, Lenticular Printing Attacks, and GhostStripe, which begin with large perturbations and progressively fine-tune 
them to remain near the decision boundary. This iterative refinement enables attackers to achieve high success rates 
across various domains. In the context of Autonomous Driving Systems (ADSs), decision-based attacks can lead to 
misclassifications with accuracy rates exceeding 90%, especially in tasks such as traffic sign recognition and lane 
detection, posing severe risks to operational safety. While strategies like adversarial training and boundary-aware 
regularization offer some defense, the stealthy and adaptive nature of these attacks demands ongoing research and 
innovation to develop more robust security measures for critical applications. 

Score Based Attacks. Score-based attacks are a class of black-box adversarial techniques in which attackers leverage a 
model's output scores, such as softmax probabilities, to indirectly infer gradient information and craft adversarial 
perturbations. By analyzing variations in these output scores, adversaries can strategically alter input data to 
manipulate the model’s predictions for a targeted class, even when the internal architecture of the model remains 
inaccessible. This method poses significant challenges in systems like Autonomous Driving Systems (ADSs), where 
subtle, imperceptible changes to input data such as images can easily deceive image classification models, compromising 
their performance. Unlike decision-based attacks, which are based solely on the final predicted labels, score-based 
attacks offer attackers additional insight into model behavior through output scores, making them somewhat easier to 
execute but still a considerable threat. Defenses against such attacks include adversarial training, which incorporates 
adversarial examples during model training to enhance robustness, as well as regularization techniques and self-
supervised learning strategies to fortify models against such vulnerabilities. 

Optimization Based Attacks. Optimization-based attacks involve framing an optimization problem to identify the 
minimal perturbation necessary to mislead a target model into misclassification. These attacks iteratively modify the 
input, aiming to maximize the model’s loss function or reduce its confidence in the true class while keeping alterations 
imperceptible. By leveraging finite difference methods to estimate gradients, attackers can successfully execute these 
strategies even without direct access to the model's gradient information. This makes optimization-based attacks 
particularly potent against Autonomous Driving (AD) models, where subtle adjustments exploit the model's fine-
grained sensitivities. Notable techniques include Judge Deceiver, a prompt injection attack targeting Large Language 
Models (LLMs), Zeroth Order Optimization (ZOO), a black-box method that only requires input-output access to deep 
neural networks, and the Carlini & Wagner (C&W) attack, which formulates adversarial example generation as an 
optimization problem to find minimal perturbations. These strategies, collectively classified as adversarial example 
attacks, challenge model robustness by forcing models into making erroneous predictions through imperceptible input 
modifications. 

Adversarial attacks, both white-box and black-box, pose critical risks to deep learning models, especially in high-stakes 
environments like Autonomous Driving Systems (ADSs). White-box attacks leverage full model access to manipulate 
inputs effectively, though real-world application is limited due to access constraints. Black-box attacks, including 
transfer-based, decision-based, score-based, and optimization-based methods, exploit output-based vulnerabilities, 
bypassing the need for internal model knowledge. These attacks target decision boundaries and model sensitivities, 
making them potent threats to systems like traffic sign and lane detection. While defenses such as adversarial training 
offer some protection, ongoing advancements are essential to counter the increasingly sophisticated nature of these 
attacks. 

3.2. Challenges in Implementing Adversarial Attack Techniques on Image Classification DL Models for ADSs 

3.2.1. Model Transparency and Explainability  

• Challenge: Deep learning models, particularly Convolutional Neural Networks (CNNs), are often regarded as 
"opaque" due to their "black-box" nature. The intricacies of their decision-making pathways are non-trivial to 
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interpret, making it challenging to decipher how the model reacts to adversarial perturbations or to pinpoint 
the root causes of misclassifications.  

• Implication: The lack of model interpretability complicates both debugging and countermeasure development 
against adversarial attacks. It undermines the system's transparency, eroding confidence in Autonomous 
Driving Systems (ADSs). Consequently, developers and human operators face difficulty in validating the 
rationale behind the model’s decisions, leading to a potential decrease in system reliability and trust. 

3.2.2. Adaptive Countermeasure Strategies  

• Challenge: As adversarial tactics advance, defense mechanisms must continuously evolve. Techniques like 
adversarial training, defensive distillation, and input preprocessing are designed to counteract adversarial 
perturbations. However, these defenses frequently create new attack vectors or fail to withstand emerging 
attack paradigms.  

• Implication: The dynamic arms race between the evolution of adversarial strategies and the development of 
countermeasures presents a persistent challenge in fortifying Autonomous Driving Systems (ADSs). Attackers 
remain agile, continuously adapting to circumvent the latest defense innovations, making it difficult to establish 
a robust, impervious security framework. 

 3.2.3. Resilient Sensor Fusion  

• Challenge: The difficulty arises in designing adversarial perturbations that can successfully target 
vulnerabilities across the diverse data streams of sensors. These attacks must account for the complex 
interactions between sensor outputs during the fusion process, making it challenging to develop perturbations 
that can manipulate the system’s perception in real-time driving scenarios. 

• Implication: The complexity of managing and manipulating data from multiple sensor streams in a cohesive 
manner makes it harder for attackers to succeed. However, this also complicates the development of effective 
defensive strategies, as each sensor type requires specialized handling to safeguard against adversarial attacks 
while maintaining seamless integration in dynamic driving environments. 

  3.2.4. Resource Constraints in Real-Time Systems 

• Challenge: Developing adversarial perturbations that exploit system vulnerabilities while respecting the real-
time operational constraints of ADSs is a complex task. These systems require rapid decision-making based on 
incoming sensor data, so creating adversarial examples that are both computationally efficient and effective in 
influencing the model in real-time is a significant obstacle. 

• Implication: To overcome this challenge, adversarial attacks must be tailored to be lightweight and fast, given 
the limited computational resources of embedded systems in autonomous vehicles. This means attack 
algorithms need to be optimized for efficiency, ensuring they can effectively compromise the model's 
performance without taxing the system’s processing capabilities, which could otherwise hinder the vehicle's 
operational integrity. 

3.2.5. Real-time Input Processing 

• Challenge: Autonomous Driving Systems (ADSs) must process input data in real-time, making it difficult to 
design adversarial attacks that can effectively alter model decisions within tight time constraints. The challenge 
lies in creating attacks that are not only effective but also computationally efficient, capable of influencing the 
model’s predictions at each decision-making timestamp without causing significant delays. 

• Implication: Adversarial perturbations must be designed for quick execution in order to get past the system's 
defenses without causing lag or interfering with the real-time flow of data processing. This is because speed 
and efficiency are essential. Crafting such attacks is particularly challenging given the limited processing 
resources in embedded systems, which must balance attack effectiveness with minimal computational 
overhead to avoid hindering ADS performance. 

 3.2.6. Adaptive Defense Mechanisms 

• Challenge: The rapid evolution of adversarial attack strategies necessitates corresponding advancements in 
defense mechanisms. Techniques like adversarial training, defensive distillation, and input preprocessing are 
designed to fortify models against perturbations, but they often create new attack surfaces or are vulnerable to 
emerging adversarial tactics. The dynamic nature of these attacks makes it difficult to maintain effective, 
adaptive defenses. 
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• Implication: This continuous "arms race" between adversarial techniques and countermeasures complicates 
the development of robust, foolproof systems for ADSs. As attackers innovate to bypass current defenses, 
ensuring the security and resilience of autonomous systems becomes a perpetual challenge, requiring ongoing 
refinement and adaptive strategies to stay ahead of adversarial threats. 

 3.2.7. Evasion Under Continuous Learning 

• Challenge: Autonomous Driving Systems (ADSs) often leverage continuous learning, where models 
dynamically adapt to incoming data streams and adjust decision boundaries. This creates a moving target for 
adversaries, as adversarial examples that succeed initially may lose efficacy after the model retrains or refines 
its parameters. Attackers must contend with this evolving landscape, where the system's adaptive nature can 
quickly render attacks obsolete. 

• Implication: The ongoing "cat-and-mouse" scenario between attackers and the adaptive nature of ADS models 
complicates the crafting of stable and persistent adversarial perturbations. To remain effective, attacks must 
be designed with the foresight to anticipate and adapt to model updates, otherwise, they risk becoming 
ineffective as the system's learning process evolves over time.  

4. Adversarial Robustness and Defensive Techniques for Image Classification Models in Autonomous 
Driving  

This section provides a comprehensive analysis of proactive and reactive adversarial defense methodologies presented 
in the literature, aimed at enhancing the resilience of image classification deep learning (DL) models against adversarial 
perturbations in Autonomous Driving Systems (ADSs). These strategies are designed to safeguard DL models by either 
bolstering adversarial robustness or identifying malicious inputs during inference. Conventional defenses primarily 
emphasize reactive measures, targeting the detection and identification of adversarial attacks post-occurrence. 
Conversely, proactive defense mechanisms aim to preemptively fortify the model's resilience by enhancing adversarial 
tolerance, optimizing generalization performance, and minimizing susceptibility to adversarial perturbations. 

Tables 3 and 5 present a detailed taxonomy of existing defense algorithms, categorizing them based on their objectives, 
methods, and ability to resist adversarial attacks. The objectives of these defenses include protecting deep learning 
models from adversarial inputs by building robust systems, detecting and preventing attacks, and improving the 
model's generalization. These defenses are divided into proactive strategies, which focus on strengthening the model's 
resilience, and reactive strategies, which aim to identify and counteract adversarial inputs after they occur.  

The taxonomy also highlights the defense approach, which refers to the methods used to make image classification 
models more resistant to attacks. These methods include gradient masking, adversarial defense techniques, statistical 
methods, data preprocessing, ensemble training, and proximity-based approaches  

 

 Figure 4 Overview of Roughness Metrix  

Additionally, the resilience of each defense is assessed by examining the types of adversarial attacks it can counter, 
whether in white-box, black-box, or mixed settings. Tables 5 and 6 show that some algorithms are effective against 
multiple types of attacks, demonstrating versatile robustness.  
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The following section focuses on two main defense techniques: proactive and reactive strategies. Each section highlights 
the core principles of these approaches and their effectiveness in countering advanced adversarial attacks. This detailed 
analysis aims to help researchers gain a clearer understanding of these methods and select the most appropriate 
strategy to address their specific challenges. 

4.1. Proactive Adversarial Robustness Defense Algorithms  

Proactive defense algorithms are designed to enhance the generalization capabilities of deep learning (DL) models while 
reducing their vulnerability to adversarial perturbations. This subsection provides an in-depth analysis of various 
proactive adversarial robustness strategies and defense mechanisms within the domain of image classification DL 
models.  

Tables offer a consolidated overview of proactive defensive techniques, encapsulating diverse methodologies, defense 
architectures, and robustness metrics such as accuracy against adversarial attacks. These tables serve as a resourceful 
guide for researchers, enabling them to gain nuanced insights into these methodologies and align them effectively with 
the specific requirements of their problem domains. 

Defense strategies for mitigating adversarial attacks in deep learning (DL) models, particularly within Autonomous 
Driving Systems (ADS), are categorized into proactive and reactive approaches. Proactive strategies focus on fortifying 
model robustness and improving adversarial tolerance. These methods often utilize preprocessing techniques, 
ensemble-based defenses, and gradient masking to create models that resist perturbations. For instance, Ensemble 
Adversarial Training, which combines diverse defenses, has demonstrated high resilience against attacks like FGSM and 
PGD, with some studies reporting up to a 30% increase in robustness under white-box (WB) scenarios. Similarly, 
Smooth Adversarial Training (SAT) aims to improve generalization by leveraging smoother decision boundaries, 
reducing vulnerability to optimization-based attacks. 

Reactive strategies, on the other hand, are designed to detect and mitigate adversarial inputs after they occur. 
Techniques like Feature Squeezing, which compresses input dimensions, have been effective in identifying adversarial 
perturbations with minimal computational overhead. Advanced methods such as Iterative Trimming focus on loss 
minimization caused by adversarial examples, showing notable improvements in detection rates, particularly in black-
box (BB) and gray-box (GB) scenarios.  

Table 3 Taxonomy of Proactive Defense Techniques against Adversarial Attacks on the Image Classification Deep 
Learning Models [1] 

             Defense Algorithms         Methodology 
  

 Resilient to:  

 Attack algorithm 

 Resilient to:  

 Adversarial  Awareness  

Ensemble-based Defense (ED) Ensemble  FGSM, BIM, PGD  WB 

Defensive Distillation Gradient Masking  FGSM, JSMA  WB  

Free Adversarial Training  Preprocessing, 
Ensemble  

PGD, C&W, SPA  WB, BB, GB  

Generative Adversarial Training Preprocessing, 
Ensemble  

I-FGSM, GAN-Based  

Attacks  

BB, GB 

FGSM +Random Input  

Initialization-based Adversarial 
Training 

Preprocessing, 
Ensemble  

FGSM, ZOO, PGD  WB, BB 

Gradient Masking  Gradient Masking  FGSM, PGD, & C&W  WB, BB, GB  

Adaptive Mix-Mode Defense 

(AMMD) 

Preprocessing, 
Ensemble,  

Gradient Masking  

PGD, FGSM, BIM  PGD, FGSM,  

BIM  

Ensemble Input Transformation Ensemble, 
Preprocessing  

FGSM, I-FGSM, BIM,  

DeepFool, C&W  

BB, GB  
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Adversarial Training Preprocessing, 
Ensemble 

FGSM, DeepFool  WB, BB, GB  

Gradient Shaping  Preprocessing  FGSM, DeepFool, 
C&W,  UAP  

BB  

Smooth Adversarial Training  

(SAT) 

Preprocessing, 
Ensemble  

FGSM, C&W  WB, BB, GB 

Adversarial Boosting Gradient Masking PGD, FGSM, BIM,  

BPDA, DeepFool, 
C&W  

BB, GB 

Random input Transformation Preprocessing  FGSM, M-BIM, 
ManiFool,  

DeepFool, C&W  

WB, BB, GB  

Adversarial Polytope  Gradient Masking  DeepFool, FGSM, PGD  WB, GB 

High-Level Representation  

Guided Denoiser (HGD) 

Preprocessing  I-FGSM, FGSM, PGD  WB, BB, GB  

Batch Adjusted Network  

Gradients (BANG)  

Preprocessing  FGSM, DeepFool, UAP  WB BB, GB 

Model Regularization Using  

Penalty Term 

Preprocessing, 
Proximity  

MI-FGSM, PGD, 
Shadow,  

C&W, BA, SPSA  

WB, BB, GB  

DeepCloak-based Feature  

Masking 

Gradient Masking  PGD, JSMA, FGSM,  

BIM,R-FGSM, 
DeepFool, 

C&W  

BB, GB  

Sample-dependent  

Adversarial Initialization (SAI) 

Preprocessing FGSM, I-FGSM, C&W, 

MI-FGSM 

WB, BB 

Self-Ensemble Adversarial  

Training (S-EAT) 

Gradient Masking,  

Ensemble 

PGD, MIM, C&W,  

AutoAttack WB, BB  

WB, BB  

Noisy Adversarial Training  

(NAT) 

Preprocessing, 
Ensemble  

Natural Noise, BIM,  

DeepFool, C&W  

BB, GB  

NULL Labeling Preprocessing  BA, SPSA  WB, BB, GB  

Dual-branch Network (DBN) Ensemble MI-FGSM,PGD, 

Shadow, C&W, 

BA, SPSA  

WB, BB, GB  

Robust Feature Purification  

(RFP) 

Preprocessing, 
Ensemble,  

Gradient Masking,  

Proximity  

FGSM, BIM, PGD, 
C&W, BPDA MI-
FGSM,PGD, Shadow, 
C&W, BA, SPSA  

WB, BB, GB  

ManiFool Geometric  

Transformation (MGT) 

Preprocessing, 
Proximity,  

Ensemble 

ManiFool, DeepFool WB, GB 

The Barrage of Random  

Transforms (BaRT) 

Preprocessing  FGSM, BIM, PGD, 
C&W,  

BPDA 

WB, BB, GB  
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Auxiliary Classifier-based GAN (AC-
GAN) 

Preprocessing, 
Ensemble 

FGSM, R-FGSM, GAN- 

Based Attacks, 
DeepFool 

BB, GB  

Ensemble Adversarial Training  

(EAT) 

Gradient Masking,  

Ensemble 

FGSM, I-FGSM, ILCM,  

BIM, PGD, C&W  

WB, BB 

Overall, resilience across these methods is evaluated under WB, BB, and GB settings, with ensemble-based defenses like 
MultiMagNet offering robust multi-directional resistance to attacks such as DeepFool and C&W. Statistical approaches, 
including Adaptive Noise Layer (ANL) and Robust Intrinsic Modeling, demonstrate versatility by addressing a broader 
range of perturbation strategies. Research demonstrates that hybrid approaches can curtail adversarial success rates 
by up to 50%, underscoring their pivotal role in fortifying ADS frameworks. These innovative methodologies mark a 
substantial leap in bolstering the adversarial robustness of image classification models, enhancing their defense against 
advanced attack strategies. 

4.2. Reactive Defense Strategy against Adversarial Attacks Introduced on the ADS-based DL Model 

The scientific community has extensively investigated reactive defense mechanisms specifically designed for ADS-
oriented deep learning frameworks. These strategies focus on real-time detection and mitigation of adversarial 
intrusions, curbing their effects and preserving system integrity. The following section delves into the critical categories 
of reactive adversarial robustness techniques and algorithms employed within image classification deep learning 
models.  

Table 4 Taxonomy of Reactive Defense Techniques against Adversarial Attacks on the Image Classification Deep 
Learning Models [1] 

 

  Defense Algorithms Methodology    Resilient to:  

 Attack algorithm 

 Resilient 
to:  

 Adversarial  

 Awareness  

Iterative trimming loss minimization Proximity  FGSM, JSMA, DeepFool, 

C&WWB, GB  

WB, GB  

Neural Cleanse Adversarial defense  

method, Proximity 

FGSM, BIM, JSMA,  

DeepFool, C&W  

WB, BB  

Feature Squeezing  Preprocessing FGSM, BIM, JSMA, C&W 
DeepFool 

WB  

Robust Anomaly Detection (RAD)  Proximity,  

Preprocessing  

FGSM, BIM, DeepFool,  

C&W  

BB, GB 

Frequency-Adaptive Compression and 
REconstruction (FARE) 

Adversarial defense  

method, Proximity 

FGSM, MI-FGSM, PGD, 

C&W  

WB, BB, GB  

Quantifying Uncertainty  

Estimates in Training Data 

Statistics, Proximity FGSM, JSMA, C&W,  

GDA, DeepFool, POE  

WB, BB, GB  

Robust Co-Teaching Ensemble  FGSM, PGD, DeepFool, 

C&W, UPA, ZOO 

WB, BB, GB  

MultiMagNet Adversarial Defense 

Framework  

Preprocessing,  

Proximity,Ensemble  

FGSM, BIM, DeepFool, 

C&W, WB, BB, GB 

WB, BB, GB 

Carrara et al. Proximity  L-BFGS, FGSM  WB 
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Reactive defense strategies for adversarial attacks on ADS-based deep learning models employ diverse methodologies, 
including preprocessing, proximity-based techniques, ensemble learning, and statistical analysis. These approaches 
exhibit varying degrees of resilience against widely used adversarial algorithms, such as FGSM, BIM, PGD, JSMA, 
DeepFool, and C&W, in white-box (WB), black-box (BB), or gray-box (GB) settings.  

Table 5 The table outlines proactive defense algorithms, models, and their robustness accuracy against adversarial 
attacks.[1] 

 Authors/Paper   Defense Algorithm    Defense Model  Robustness 
Accuracy  

Jia et al.  Sample-dependent Adversarial 

Initialization-based Adversarial  

Training  

ResNet18  58.46%, 48.17%,  

63.71%,53.33%, 
64.14% 

Tramèr et al. Ensemble Adversarial Training  Inceptionv3,Inception 

v2,ResNet50  

78%, 65.3%, 89.9%,  

47.9%, 53.6%, 33%  

Papernot et al. Defensive Distillation  Multi-scale CNN  98.41%, 98.99%  

Shafahi et al.  Free Adversarial Training  ResNet50, ResNet101, 

ResNet152  

40%, 36.44%, & 
35.94% 

Wang et al.  Self-Ensemble Adversarial  

Training 

ResNet18  60.2%, 60.31%, 82%, 
& 

70.26% 

Guo et al. Ensemble Input Transformation  ResNet50, ResNet101,  

DenseNet169,  

Inceptionv4  

70.37%, 
71.52%,71.47%, 

70.50%  

Wong et al.  FGSM + Random Input Initialization-
Based I Adversarial Training  

ResNet50  96.7%  

Gao et al DeepCloak-based Feature  ResNet164 50.17%  

Single Value Decomposition (SVD) Preprocessing,  

Statistics  

FGSM, JSMA  WB, BB, GB  

Fine-pruning Proximity,  

Preprocessing 

FGSM, BIM, DeepFool,  

C&W  

BB, GB  

Feature Purification Proximity  FGSM, BIM, DeepFool  BB, GB  

Progressive Unified Defense (PUD) Ensemble,  

Proximity,  

Preprocessing  

PGD, C&W BB, GB  

Robustand Generalized Defense 

(Ensemble-based Adversarial 

Training (EAT)) 

Ensemble,  

Preprocessing  

Patch noise WB  

Cohen et al. Proximity  FGSM, JSMA, DeepFool, 

C&W  

WB 

Adaptive Noise Layer (ANL)  

(Pix2pix strategy) 

Proximity,  

Preprocessing, 

Statistics 

FGSM, BIM, PGD, C&W, 

MI-FGSM, and  

AutoAttack  

WB, BB 

Robust Intrinsic Modelling  

algorithm 

Statistics, Proximity FGSM, BIM, DeepFool  BB, GB 
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Masking 

Kantchelian et al. Adversarial Boosting RBF-SVM 60% 

Saleh et al. Smooth Adversarial Training  ResNet50 76.8% & 77.0%  

Azim et al.  Ensemble-based Defense (ED)  Standard CNN, 

EfficientNet  

90.00%, 51% 

Wong et al. Adversarial Polytope  Deep-CNN 61.9%  

Xie et al. Random data Input  

Transformation 

Inceptionv3,ResNet101, 

Inception-ResNetv2  

92.4%, 98.3%, & 
99.3%  

Hosseini et al. Three-stage NULL Labeling  Deep-CNN  99.46% & 97.37% 

Raff et al. (BaRT) Barrage of Random Transforms  ResNet50 & 

Inceptionv3  

78.90% & 63.51% 

Rozsa et al.  Batch Adjusted Network  

Gradients 

LeNet Series 90.33% to 41.34%  

Mirnateghi et al. Dual-branch Network (DBN) VGG16, ResNet50,  

Standard CNN  

93.50%  

Lee et al.  Gradient Masking  Deep-CNN  67.8%, 60%, 46.9%  

Nayak et al. Robust Feature Purification  

(RFP)  

ResNet50, VGG19,  

VGG16 

92.10%  

Khan et al.  Adaptive Mix-Mode Defense  

(AMMD)  

Resnet-152, GoogleNet  99.00%, 88.00%, 
55%  

Liao et al.  High-Level Representation  

Guided Denoiser 

Inception v3  73.9% & 74.8%  

Xu et al. S³ANet DCNN  93.00%  

Shi et al.  Random Feature Nullification  

(RFN)  

Standard CNN 78%, 83%, 89%  

For instance, iterative trimming loss minimization and fine-pruning leverage proximity-based strategies to counter 
FGSM, DeepFool, and C&W attacks effectively in WB and GB scenarios. Preprocessing techniques, such as feature 
squeezing and single-value decomposition (SVD), focus on mitigating FGSM, BIM, and JSMA attacks. Ensemble-based 
defenses, like robust co-teaching and multiMagNet frameworks, enhance resilience across multiple attack types, 
including ZOO and UPA, in all adversarial settings.  

The table 5 summarizes several proactive defense algorithms designed to enhance the robustness of image classification 
deep learning models against adversarial attacks. Notable approaches include Defensive Distillation by Papernot et al., 
which achieved high accuracy of 98.41%–98.99% with multi-scale CNNs, and Ensemble Adversarial Training by Tramèr 
et al., with varied accuracy results ranging from 33% to 89.9% across different models like Inceptionv3 and ResNet50. 
Self-Ensemble Adversarial Training by Wang et al. showed accuracy between 60.2% and 82% for ResNet18, while 
Ensemble Input Transformation by Guo et al. yielded moderate accuracy ranging from 70.37% to 71.52% across 
multiple models. FGSM + Random Input Initialization by Wong et al. achieved an impressive 96.7% for ResNet50, and 
Robust Feature Purification (RFP) by Nayak et al. resulted in 92.10% accuracy for models like ResNet50 and VGG16. 
Adaptive Mix-Mode Defense (AMMD) by Khan et al. reached 99% accuracy for ResNet152, and Three-stage NULL 
Labeling by Hosseini et al. achieved 99.46% accuracy for Deep-CNNs. These findings highlight the range of effectiveness 
among defense strategies, underscoring their potential and areas for further optimization. 

Advanced hybrid approaches, such as Adaptive Noise Layer (ANL) and Progressive Unified Defense (PUD), integrate 
proximity, preprocessing, and statistical strategies, demonstrating robustness against sophisticated attacks like MI-
FGSM and AutoAttack. Techniques such as Neural Cleanse and Frequency-Adaptive Compression and Reconstruction 
(FARE) employ adversarial defense methods combined with proximity analysis to bolster defenses against a wide 
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spectrum of attack vectors. Collectively, these strategies illustrate a multi-faceted approach to fortifying deep learning 
models against adversarial threats. 

4.3. Challenges Associated with Implementing Defense Strategies for Image Classification Deep Learning 
Models in ADS Against Adversarial Attacks 

Defending and fortifying image classification deep learning (DL) models for autonomous decision systems (ADS) against 
adversarial attacks presents a myriad of challenges, distinct from conventional image classification tasks. The criticality 
of ADS in safety-sensitive domains mandates defense mechanisms that not only exhibit robust adversarial resilience 
but also maintain high accuracy on legitimate inputs. Any compromise in accuracy risks jeopardizing operational safety, 
such as in autonomous navigation systems. These challenges are compounded by the intricate nature of adversarial 
attack patterns, the trade-offs inherent in current defense strategies, and the adaptive evolution of adversarial 
techniques. Below are the primary obstacles in deploying effective defense frameworks for ADS: 

Generalization and Robustness Trade-offs: In autonomous driving systems (ADS), defense mechanisms such as 
adversarial training improve model robustness against specific adversarial perturbations but often at the expense of 
generalization. While the model becomes resilient to certain attack types, its performance on clean, real-world inputs 
may degrade, potentially causing unsafe driving decisions. For instance, adversarially trained models might fail to 
accurately recognize objects or pedestrians under normal conditions due to overfitting to adversarial distributions, 
which compromises safety.  

High Computational Overhead: Many defense algorithms, including adversarial training, ensemble techniques, or fine-
pruning, require substantial computational resources. This computational burden is a critical limitation for ADS, which 
demand real-time decision-making capabilities. Processing time-intensive defense mechanisms in dynamic 
environments, such as traffic, where split-second decisions are necessary, could delay system responses and lead to 
catastrophic consequences, such as collisions or misinterpretations of traffic signals. 

Transferability of Adversarial Attacks: In ADS, adversarial examples crafted for one neural network can transfer to 
others with similar architectures, making model-specific defenses inadequate. For instance, an adversarial image 
designed to fool a vision system in one car model may successfully deceive a similar system in another brand or model, 
bypassing the proprietary defenses in place. This cross-model vulnerability creates significant challenges in developing 
robust ADS solutions that are immune to widespread attacks.  

Dynamic Nature of Adversarial Attacks: Adversarial attack strategies are continuously evolving, introducing 
sophisticated techniques like adaptive attacks that exploit known weaknesses in existing defenses. In ADS, attackers 
can generate perturbations that target the specific defense mechanism employed, such as exploiting patterns in 
adversarial trained networks. This dynamic nature necessitates constant updates and innovations in defense strategies, 
which is resource-intensive and difficult to sustain in commercial autonomous vehicles.  

Limited Effectiveness Across Attack Types: Most existing defense techniques are tailored for specific attack scenarios, 
such as white-box or black-box attacks, but fail to provide comprehensive protection against hybrid or novel adversarial 
strategies. In the context of ADS, this limitation is critical, as autonomous vehicles encounter diverse environmental 
conditions and potential attack scenarios. For instance, a defense mechanism effective against white-box attacks might 
be vulnerable to black-box or gray-box strategies, leaving the vehicle susceptible to malicious exploitation. 

Scalability to Large Datasets: Preprocessing-based defenses, such as feature squeezing or noise injection, often become 
computationally prohibitive when applied to the vast datasets required for training ADS. Autonomous driving systems 
rely on high-resolution imagery and extensive datasets for accurate scene understanding and decision-making. The 
resource-intensive nature of these preprocessing methods can slow down system training or deployment, making them 
unsuitable for real-world, large-scale applications in the ADS domain.  

Loss of Interpretability: Defensive techniques like gradient masking and high-dimensional transformations obscure the 
internal workings of deep learning models, reducing their interpretability. For ADS, interpretability is crucial for 
validating and certifying system safety. A lack of clarity in how the model arrives at decisions—especially in defense 
mechanisms—can lead to reduced trust in the system and difficulty in diagnosing and rectifying failures, which is critical 
in high-stakes applications like autonomous driving.  

Adversarial-Aware Training Bottlenecks: Incorporating adversarial examples during training often causes overfitting 
to specific adversarial patterns, reducing the model’s ability to adapt to new or unseen attacks. For ADS, this overfitting 
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could lead to scenarios where the vehicle performs well under test conditions but fails to recognize or respond to real-
world adversarial scenarios, endangering passengers and pedestrians.  

5.  Emerging Trends and Key Findings in Adversarial Attacks and Countermeasures  

The domain of adversarial attacks and defenses in deep learning is witnessing rapid advancements, characterized by 
increasingly complex and diverse attack Frameworks. A prominent trend involves adaptive and transfer-based attacks, 
where adversarial examples crafted for one model exhibit high efficacy when applied to other models with similar or 
differing architectures. This underscores the necessity of designing robust, transferable defense strategies to mitigate 
adversarial threats in dynamic and heterogeneous environments, such as those in Autonomous Decision Systems (ADS).  

Efforts are intensifying to circumvent well-optimized defenses, particularly in image classification models for ADS. 
Adversaries exploit vulnerabilities across homogeneous and non-homogeneous models, necessitating innovative 
solutions that maintain predictive accuracy while enhancing robustness. Existing defensive approaches, such as 
adversarial training, defensive distillation, and random input manipulation, have shown promise but often sacrifice 
model accuracy for improved resilience. This trade-off highlights the ongoing challenge of balancing robustness with 
generalization, particularly in safety-critical ADS applications.  

The integration of cloud-based data processing and distributed learning frameworks is an emerging paradigm aimed at 
fortifying model resilience. Cloud platforms enable models to train on extensive datasets aggregated from 
interconnected devices in the driving environment, enhancing their adaptability to diverse attack vectors. Similarly, 
distributed and federated learning frameworks promote decentralized training across Internet of Things (IoT) devices, 
fostering collaborative learning that strengthens the robustness of individual sub-models and their parent ADS models.  

Verifying and quantifying the robustness of image classification models against adversarial threats has become a critical 
focus. Factors such as regulatory compliance, safety imperatives, evolving threat landscapes, and the complexity of deep 
learning systems have driven this trend, ensuring secure and dependable ADS operations. Techniques for universal 
defense frameworks are also gaining traction, addressing limitations of current methodologies, which often target 
specific attack types and lack comprehensive applicability.  

An additional trend involves leveraging the inherent challenges of white-box attacks in safety-critical applications. 
While attackers may not gain direct access to gradient information of target models, shadow models are increasingly 
used to generate optimized adversarial examples. These are then deployed in black-box scenarios, exploiting transfer-
based attack techniques. This evolution in adversarial strategies reinforces the need for robust countermeasures 
capable of addressing both direct and indirect threats in real-world ADS environments. This field continues to prioritize 
innovation in defense mechanisms, emphasizing scalable, adaptive, and generalizable solutions that ensure secure, 
transparent, and high-performing image classification models for ADS. 

6.  Recommendations and Future Scope  

Advancing the robustness of deep learning (DL) models in Autonomous Decision Systems (ADS) necessitates a strategic 
focus on emerging adversarial threats and defense methodologies. A pivotal recommendation is the development of 
standardized, unified frameworks for evaluating defense mechanisms. Such frameworks should incorporate modular 
designs and universal metrics, ensuring adaptability and comprehensive benchmarking across diverse adversarial 
scenarios. Addressing the trade-off between robustness and generalization remains critical. Hybrid approaches, such as 
combining adversarial training with preprocessing transformations, can enhance resilience to adversarial attacks 
without compromising accuracy on clean inputs.  

The growing prominence of transferability-based attacks underscores the need for adaptable defenses capable of 
generalizing across models and datasets. Techniques like ensemble modeling, federated learning, and domain 
adaptation hold promise for mitigating such threats. Simultaneously, ensuring computational efficiency and scalability 
is vital for real-time ADS applications. Lightweight methodologies, including noise injection and feature squeezing, can 
provide practical solutions for large-scale deployment without overburdening system resources.  

Explainability and interpretability in defense mechanisms are gaining traction, as transparency in decision-making 
fosters trust and reliability, especially in safety-critical domains. Integrating explainable AI (XAI) into adversarial 
defenses can bridge the gap between robustness and user trust. To counter the dynamic evolution of adversarial 
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strategies, adaptive defenses leveraging reinforcement learning and self-improving models must be prioritized. These 
systems can anticipate and neutralize emerging threats, ensuring resilience in unpredictable environments.  

Additionally, distributed and cloud-based solutions, such as federated and incremental learning, offer robust, scalable 
frameworks by leveraging diverse datasets and fostering collaborative learning. Such approaches align with the 
complex and heterogeneous nature of ADS environments. Cross-disciplinary collaboration among domains like 
cybersecurity, computer vision, and human factors engineering can further enhance the robustness of adversarial 
defenses by addressing multifaceted challenges.  

The future scope of this research includes the development of universal defense mechanisms resilient to various attack 
types, real-time implementation capabilities for autonomous vehicles, ethical frameworks for AI deployment, and 
broadening applications to fields like healthcare, financial systems, and IoT ecosystems. As adversarial tactics evolve, 
sustained innovation and interdisciplinary approaches will be pivotal in fortifying DL models and ensuring the 
reliability and safety of ADS in real-world scenarios. 

7.  Conclusion 

In conclusion, addressing adversarial attacks on deep learning (DL) models in Autonomous Decision Systems (ADS) 
remains an ongoing, multifaceted challenge that necessitates continuous innovation in both defense mechanisms and 
model resilience. As adversarial threats become increasingly sophisticated, the demand for unified, adaptive, and 
scalable defense solutions that balance robustness and accuracy grows more urgent. Hybrid defense strategies 
combining proactive and reactive methods, lightweight defenses, and transferability-based solutions are key to enabling 
the practical deployment of secure ADS models in dynamic, real-time environments. Additionally, the integration of 
explainable AI (XAI) and fostering cross-disciplinary collaboration will be pivotal in enhancing transparency, trust, and 
safety, especially in critical applications.  The future of AD technology is heavily reliant on its safety and the trust it 
garners on public roads. Therefore, establishing robust countermeasures to defend image classification DL models from 
adversarial attacks is essential for gaining confidence from policymakers, industry leaders, and the public. By leveraging 
the countermeasures outlined in this review, the safety, effectiveness, and adoption of ADS technology can be greatly 
enhanced. This will not only benefit the development of ADS but also mitigate the risks associated with adversarial 
vulnerabilities. 

Moreover, the constantly evolving nature of adversarial threats calls for continuous improvement in the resilience of 
DL models used in ADS. As these threats evolve, so too must the countermeasures that protect against them. This review 
highlights the need for universal countermeasures to improve the adversarial tolerance and robustness of image 
classification models in autonomous driving. Researchers and experts must work collaboratively to stay ahead of 
adaptive attack techniques, ensuring the long-term security and adaptability of AD technology. 

This systematic review has provided an in-depth analysis of adversarial attacks and robustness algorithms in image 
classification for ADS. It underscores the fact that while much research has focused on developing new attacks, existing 
countermeasures often lack the robustness required to effectively mitigate these threats. By identifying emerging trends 
and potential research directions, this review emphasizes the need for continued exploration into universal defenses 
and enhancing adversarial tolerance. The ultimate goal is to ensure that image classification DL models for ADS can 
withstand evolving adversarial challenges and maintain their reliability and safety in real-world applications. 
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