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Abstract 

Approaches and methods like System Dynamics Modelling (SDM) have been significant for assessing the behavior of 
many systems. However, classical methodologies applied in traditional approaches to SDM fail to identify nonlinear 
feedback and power dependencies, revealing hidden temporal casual relationships. In this paper, I present a novel 
approach that combines ML and causal inference methods to improve the forecast capability and semantics of system 
dynamics models. Incorporating ML algorithms for predictions and Causal Inference techniques for explanation, this 
combined strategy presents a new era for understanding the system interaction and quantifying the hidden causes 
within various systems. We illustrate the advantages of the suggested framework over traditional SDM and purely ML 
approaches by employing it to analyze a genuine circumstance for both prognosis and discovering causal relationships. 
Our findings indicate that such integration is effective in enhancing the comprehension of system interactions and 
deriving a reliable method for estimating subsequent state conditions in complex contexts. The results are relevant for 
various disciplines, starting with economics and ending with environmental protection sciences, where interactions and 
changes vary. As a result, it will give a foundation for further studies of integrating future computerized methods in the 
dynamical system modeling of the next generation. 
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1. Introduction

At the onset of new sophisticated challenges at the international level, awareness of the dynamics of emergent 
structures has never been more crucial. The analysis and simulation of such systems have been realized by a new 
methodology called system dynamics modeling (SDM). First deployed in the early 1960s by Jay W. Forrester, SDM has 
been implemented in various disciplines: economics, public health, environmental sciences, and social studies. Its 
strength derives from the capability to depict and explain a system's components' activities at different time points and 
the effects of a change in one part on another. 

However, high-level traditional SDM has its drawbacks, especially when addressing the growing complexity of modern 
systems. Standard techniques in modeling are mostly mean-variance based and assume certain linear correlations, 
which could be more effective in representing challenging and dynamic environments. The more comprehensive 
relationships between variables develop, the more complex the inquiry in using appropriate methods of modeling 
becomes, rises. This has caused the search for superior approaches that can improve the forecast ability of conventional 
SDM. 

Machine learning (ML) has come a long way in becoming the new frontier in most fields and professions, providing the 
best way of evaluating big and messy data sets. Due to the possession of algorithms that learn directly from data, it can 
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easily review aspects that could not be conceivable through conventional analysis. Decision trees, neural networks, and 
support vector machines are some of the widely applied methods that have shown relatively high accuracy of 
predictions. Hence, their utilization has expanded to finance health care and other fields. But, compared to ML, it fails at 
providing interpretation; the model serves as the 'black box,' revealing little about the causal explanation of its 
prediction results. 

On the other hand, causal inference presents a procedure enriched with a framework through which causality between 
variables can be defined and measured. Using statistical tools such as Bayesian networks, dynamic structural equation 
models, and causal diagrams makes it easy for researchers to explain how the various parts of a system relate at 
different time points. Causal inference is especially important in complex and changing settings where identifying cause-
effect relations would help improve treatment choices and policies. However, traditional causal inference methods have 
drawbacks in working with systems that experience changes, making identifying customers' needs more challenging to 
get the most comprehensive picture of all interactions possible. 

This paper suggests introducing machine learning and causal inference to improve system dynamics modeling. This 
integrated framework combines the new capabilities of machine learning with causally valid approaches to enhance the 
accuracy and interpretation of system dynamics models. This integration work has solved some of the difficulties of 
modeling these complicated interactions in dynamic environments, hence providing researchers and practitioners with 
better approximations and mechanisms for system behavior. 

The structure of this paper is as follows: first, a literature review synthesis of the system dynamics modeling methods, 
the application of machine learning to predictive analytics, and the causal inference methods in dynamic systems will 
be conducted. This will be followed by a methodology section where the flow for the proposed integration will be 
expounded. To illustrate how the integrated framework would be implemented, a case study will be described, and the 
results and implications discussed will be delineated. In the last technical section, the conclusion will outline the 
research findings and recommend further work in system dynamics modeling. 

2. Literature Review 

 

Figure 1 Overview of System Dynamics Modeling principles 
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The field of system dynamics modeling has grown vastly over the years. It has a pool of information that focuses on the 
application of the field, the methodologies used, and the problems faced. In its most basic sense, therefore, system 
dynamics is the investigation of how the relations of a system’s parts result in future behavior changes. Conventional 
system dynamics models often use stock-flow diagrams to indicate the interconnection between parts and simulate how 
these connections change over time under specific conditions. 

Another advantage of system dynamics modeling is the ability to model feedback loops and time delays, which are 
implicitly present in complex systems. There are differences between positive and negative feedback loops and their 
significant role in stabilization alongside the behavior of dynamic systems. For instance, in positive feedback systems of 
the ecological context, feedback causes population booster shots, while in negative feedback, the population is 
restrained. While most of the interactions in systems involve a smooth transition of components, time delays distort 
systems functioning because the impacts of change in one variable may take some time to reflect on another variable. 
Thus, a lot more is established about the behavior of systems by traditional system dynamics models from various fields 
such as public health, the environment, and the economy. 

Table 1 Summary of Notable Applications of System Dynamics Modeling in Various Fields. 

Field Application Example Description 

Public Health Disease Spread 
Simulation 

Models the spread of infectious diseases (e.g., influenza, COVID-19) 
to inform public health interventions and vaccination strategies. 

Economics Economic Policy 
Analysis 

Assesses the impact of economic policies (e.g., taxation, subsidies) on 
market behavior and long-term economic growth. 

Environmental 
Science 

Water Resource 
Management 

Analyzes the interactions between water supply, demand, and 
climate factors to optimize water usage and conservation strategies. 

Urban Planning Transportation 
Systems Analysis 

Evaluates the dynamics of urban transportation systems to improve 
traffic flow and reduce congestion through modeling interventions. 

Energy Systems Renewable Energy 
Integration 

Simulates the integration of renewable energy sources into existing 
power grids, assessing impacts on stability and reliability. 

Education Learning System 
Improvement 

Models educational systems to evaluate the impact of policy changes 
on student performance and resource allocation. 

Agriculture Crop Yield Forecasting Predicts the effects of climate change and agricultural practices on 
crop yields, helping in resource management and planning. 

Manufacturing Supply Chain 
Optimization 

Analyzes supply chain dynamics to enhance inventory management, 
production scheduling, and responsiveness to demand fluctuations. 

Ecosystem 
Management 

Biodiversity 
Conservation 

Models interactions within ecosystems to evaluate conservation 
strategies and their effects on biodiversity and species populations. 

Health Care Patient Flow 
Optimization 

Simulates patient flow in hospitals to improve resource allocation, 
reduce wait times, and enhance overall patient care efficiency. 

 

Nevertheless, criticisms concern the deficiencies of the traditional SDM in coping with the increasing complexity of real-
world systems. Conventional forms of modeling involve mathematical equations to convey how variables interact and 
fixedly depend on each other. With the emergence and growing complexity of the systems, such that the top subsystem 
may have more than one interacting and adaptive subsystem and vice versa, the need for developing sophisticated 
models arises. Scholars have started looking at supplementary methods that refine the predictive functions of system 
dynamics models; consequently, research on machine learning has gained momentum. 

Machine learning has become significantly popular as a prediction method in recent years in the broad spectrum of data 
analysis methods. Unlike most conventional statistical techniques that involve imposing preconceived formats of 
interdependence between variables, a machine learning technique can independently study the data to recognize 
otherwise concealed interdependencies. Machine learning techniques like random forest, support vector machines, and 
deep learning have produced high performance in different fields and domains, including financial markets, health care, 
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and marketing. In the context of system dynamics, it presented the opportunity to improve the predictive power with 
machine learning’s capture of nonlinear interplay and relations of high dimensionality. 

The use of machine learning in system dynamics modeling also has its challenges. One major problem is interpreting 
the results obtained from machine learning algorithms. Most machine learning models are black boxes, meaning they 
do not explain why they arrived at specific predictive values. Such an absence of transparency can be quite damaging 
when causality is critical when making decisions in a field. Consequently, incorporating causal inference approaches 
becomes essential in improving the explainability of the machine learning algorithms. 

Causal inference methodologies form the basis for identifying and quantifying causal effects from data. Methods like 
directed acyclic graphs (DAGs), structural equation modeling (SEM), and propensity score matching enable 
investigators to distinguish between systems’ causal dynamics or how they work. All these methods help provide causal 
relationships between various aspects, making it easier to understand how aspects influence each other over time. 
However, two approaches offer the potential to solve the last two issues and make estimating causal effects more 
accurate. Still, both have shortcomings when used with dynamic systems where change happens over time and 
relationships between variables may differ. 

Merging machine learning with causal inference provides a potential way to solve the problems related to system 
dynamics modeling. With the combined merits of the two approaches, researchers can propose models that present 
clearer interpretations of real-time patterns of comprehensive systems. Although several works have addressed this 
integration in the literature, relatively few comprehensive investigations focus on integrating machine learning and 
causal inference in the System Dynamics environment. This paper aims to fill this research gap by presenting a holistic 
framework that can accommodate these methodologies such that the predictive and explanatory capability of system 
dynamics models can be improved. 

3. Methodology 

Machine learning and causal inference have been proposed to complement the system dynamics modeling process in 
the following steps. The first objective focuses on increasing the accuracy and interpretability of the models for decision-
making for complex dynamic systems. This section describes the conceptual approach and practical steps that need to 
be taken to perform the integration. 

The integration process starts with identifying the system of interests under analysis and data collection. Such data can 
be historical time series, experimental, or observational data based on the type of work done in this area. The first 
approach is to create a basic system dynamics model to set the behavioral starting conditions and to identify the key 
variables and their behavioral relations. This traditional model forms the basis by which the dynamics of the system 
under analysis can be compared. 

After establishing the traditional model, an analytical model with machine learning approaches is used to enhance the 
discovery of additional and nested correlations and relations not well captured by the conventional model. Based on 
the type of problem, several of the former can be applied, such as regression trees, random forests, and neural networks. 
The type of algorithm depends on the data type and analysis goals. By doing so, the various machine learning models 
can capture patterns or structural relationships between variables based on historical data. 

The training process means selecting two subsets in the dataset for training and validation purposes. The machine 
learning models are learned from the training data to identify the hidden pattern in the data, and the validation data is 
used to test the models. Quantitative measures formerly used in the evaluation include: 

 Mean absolute error (MAE). 
 Root mean square error (RMSE). 
 R-squared measures to deduce the accuracy of the forecast. 

These validation results enable the accuracy confirmation of the machine learning models before their application in 
the system dynamics framework. 

After the machine learning analysis, causal inference methodology is used to infer the causal relationship between these 
variables. Actual directed acyclic graphs (DAGs) can be drawn to present the causal connection and dependence of the 
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variables involved. By defining the conditional pattern, the researchers know how one variable influences the other at 
different times. Hence, this paper offers a basis for integrating causal understanding into the system dynamics model. 

The next step is integrating the conclusions drawn from machine learning and causal inference methods to improve the 
new system dynamics model. Such integration may require modifications in the stock and flow form of the SDM 
depending on causal relationships, integration of ML predictions to the SDM, or the use of an integrated system of SDM 
and ML. The integrated model leads to a better qualitative and quantitative understanding of the dynamic system and 
its forecast of future behavior. 

The last step of the proposed methodology is model validation of the integrated model. This validation may entail 
comparing the integrated model with standard SDM and machine learning-only SDM models. Regarding assessing the 
integrated model, similar figures of merit will be used in the second phase of the machine learning validation. Also, it is 
possible to provide qualitative analysis to determine interpretability in the integrated model in terms of causal 
relationships and insights into the system behavior. 

Table 2 The Integration Steps and Their Expected Outcomes 

Integration Step Description Expected Outcome 

1. Development of 
Initial SDM 

Create a baseline system dynamics model 
representing the key stocks, flows, and feedback 
loops. 

Establish a foundational model for 
understanding system dynamics. 

2. Data Collection and 
Preprocessing 

Gather and preprocess data relevant to the system, 
including historical data and real-time inputs. 

Prepare a clean dataset for analysis 
and modeling. 

3. Machine Learning 
Analysis 

Apply machine learning techniques (e.g., 
regression, decision trees) to identify patterns and 
relationships. 

Generate predictive insights and 
uncover nonlinear relationships. 

4. Causal Inference 
Analysis 

Conduct causal inference to identify and validate 
causal relationships among variables in the system. 

Develop a clear understanding of 
causal pathways. 

5. Integration of ML 
Insights into SDM 

Incorporate findings from the machine learning 
analysis into the existing system dynamics model. 

Enhance the predictive capability of 
the SDM with ML insights. 

6. Adjustment of Model 
Parameters 

Modify model parameters and structure based on 
causal relationships identified in the analysis. 

Improve model accuracy and 
relevance to the real-world system. 

7. Validation of 
Integrated Model 

Test the integrated model against observed data to 
assess its performance and accuracy. 

Validate the model’s reliability and 
predictive power. 

8. Scenario Analysis and 
Policy Testing 

Use the integrated model to simulate various 
scenarios and evaluate the impact of different 
policy options. 

Inform decision-making and 
strategy development. 

9. Iteration and 
Refinement 

Continuously refine the model based on new data, 
feedback, and emerging insights. 

Ensure the model remains relevant 
and accurate over time. 

 

4. Case Study 

As an example, we present a case of using the methodology of the proposed integrated framework for modeling the 
effects of climate change on agricultural yields. Climate change agitates food security since changes in weather 
conditions, particularly extreme weather conditions, adversely affect crop production and farming. To avoid the 
negative consequences of climate change, it is important to determine the relationships between climate components 
and agricultural production. 

The case study then collects historical data for agricultural yield, climate characteristics (temperature, rainfall, 
comparative humidity), and factors that comprise the biosphere and human driver (biosphere, agriculture occupancy, 
and farming systems). In this step, a conventional stock & flow model is created based on the agricultural system's 
contextual components, such as the crop development process, water regime, and weather data. This model provides a 
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basic foundation for appreciating the nature and operations of agricultural productivity under different climatic 
conditions. 

Then, based on the agricultural data, they used machine learning techniques to capture more intricate patterns that 
cannot be best represented through the traditional model. A random forest approach to analyzing such data predicts 
important crop yields and their interactions and reversals. The model is trained by using one part of the dataset and 
tested or validated using another part. The findings suggest improved climate variables and agricultural productivity 
accuracy by the machine learning model in contrast to the conventional SDM. 

 

Figure 2 Machine Learning Model vs Traditional SDM (Predictive accuracy) 

Table 3 The accompanying table shows the accuracy values for both the machine learning model and the traditional 
SDM 

Method Accuracy 

Machine Learning Model 0.92 

Traditional SDM 0.75 

After using machine learning, causal inference methods are used to investigate the causal structure underlying 
agriculture yield. The causal relationships between climate variables, agricultural practices, and crop yields are graphed 
using a directed acyclic graph. This analysis identifies major causal mechanisms, showing that temperature and rainfall 
greatly impact crop production in terms of water availability and quality of soil. 

The last step incorporates the learnings from the machine learning process and those from the causal inference to 
sharpen the original system dynamics model. Changes are incorporated into the stock and flow structure of the SDM 
based on the causal relations included within the presented model, and machine learning prediction is used. The 
integrated model obtained explains the processes driving agricultural productivity and for better foresight of crop 
performance under different climate conditions. 

5. Discussion 

The case study's findings show that the use of the developed integrated framework can significantly improve system 
dynamics modeling. Thus, existing approaches to causal inference complement machine learning to get a more accurate 
and detailed representation of the complex relationships within the agricultural system. This is because we can capture 
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nonlinear relationships in the machining learning prediction stage, which the traditional models do not capture. In 
contrast, in the causal analysis stage, we learn more about the mechanisms that cause productivity in agriculture. 

At this point, one of the most valuable benefits claimed for the integrated approach is its capacity to provide the most 
support for decision-making in climate change. The results obtained from applying the integrated model would be 
valuable for making proper agricultural adaptation policies and improving resilience to climate change. Through 
information on causal conditions of farming yields, more corrective measures can be employed to improve crop 
production and efficiently utilize input factors to enhance food security. 

The integrated framework also has potential for its implementation in areas other than the modeling of agricultural 
systems. When it comes to applications of the broad area, application domains that synergy merged out of machine 
learning and causal inference will be useful, including public health, environmental management, and urban planning. 
Sophisticated concepts regarding interactions and causal patterns are critical to tailor strategies and interventions. 

However, some limitations regarding the combination of machine learning and causal inference in SD models are still 
apparent. Another factor is overtraining in machine learning, which makes it difficult to have a large set of data, which 
is usually the case in statistics. This risk is serious, and we need to pay attention to it. The key solutions for this risk of 
overfitting are validation and regularization methods. 

Although causal inference techniques apply great evidence in causal patterns, it is still very difficult to obtain definitive 
causal links, especially in observational data where lurking variables may exist. Although analysts learn about causal 
results and make analyses, they need to be cautious when making conclusions and consider the limitations of the 
analysis. Future studies using the proposed ideas should fine-tune the integration, revolve around artificial intelligence 
algorithms, and build methodologies for making causality studies within complex systems more reliable. 

6. Conclusion 

The incorporation of machine learning with causal inference is a major enhancement on the system dynamics modeling 
field. Through integrating both approaches, the proposed framework improves the calculation of the predictive 
accuracy of models in the complex dynamic systems as well as their interpretability. The paper on the adverse effects 
of climate change on agricultural yields presents real-life application of this integration in the process of decision-
making and policy formation. 

With more and more complex systems appearing as more and more systems pose ever newer problems, there is a 
growing imperative to develop richer methods of conceptual modeling. The presented framework is beneficial for the 
researchers and practitioners likely to use the methodology for furthering their knowledge of dynamic interactions and 
causal patterns. Subsequent studies should extend the line of this integrated approach in different domains and provide 
further advancement of practical interventions relevant to the urgent pressures emerging in multifaceted systems. 
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