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Abstract 

Throat microphones (TM) offer significant advantages in noisy environments by capturing speech signals directly from 
the throat, thus minimizing external noise. However, TM signals often lack clarity and intelligibility compared to 
conventional microphones. This paper presents a comparative study of three prominent feature extraction 
techniques—Mel-frequency cepstral coefficients (MFCC), Linear Predictive Cepstral coefficients (LPCC), Perceptual 
Linear Prediction (PLP) for enhancing speech captured by throat microphones. Each technique is evaluated based on 
its ability to enhance speech clarity and reduce noise interference. Experimental results on the ATR503 dataset, 
consisting of throat and close-talk microphone recordings, reveal that LPCC achieved an average Signal-to-Noise Ratio 
(SNR) improvement of 3dB and a Perceptual Evaluation of Speech Quality (PESQ) score increase of 1.3133 and 0.9553 
compared to MFCC and PLP. In subjective evaluations the highest mean rating of 8.46 for LPCC indicates it was perceived 
as the most intelligible and clear. LPC spectra analysis demonstrates that Linear Predictive Cepstral Coefficients (LPCC) 
in retrieving missing frequencies in speech captured by throat microphones. These findings suggest that LPCC is a 
robust method for throat microphone speech enhancement, offering significant improvements in speech intelligibility 
and quality in noisy environments. 

Keywords: Throat Microphone (TM); Mel-frequency cepstral coefficients (MFCC); Linear Predictive Cepstral 
coefficients (LPCC); Perceptual Linear Prediction (PLP); LPC Spectra; Perceptual Evaluation of Speech Quality (PESQ); 
Signal-to-Noise Ratio (SNR) 

1. Introduction

Speech communication in noisy environments remains a persistent challenge across various domains, ranging from 
military operations to industrial settings. Throat microphones offer a promising solution by capturing speech directly 
from the larynx, thereby mitigating ambient noise and improving speech intelligibility. However, achieving optimal 
speech quality from throat microphone recordings necessitates effective speech enhancement techniques [1] [2]. 

Throat microphones, designed to pick up vocal vibrations directly from the neck, are renowned for their robustness in 
noisy conditions where conventional microphones fail to deliver clear signals. This capability makes them indispensable 
in applications such as speech communications, where reliable voice transmission in adverse acoustic environments is 
critical [1].  
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1.1. Problem Statement 

Despite their advantages, throat microphones often capture speech signals contaminated with noise, posing significant 
challenges for intelligibility and reliability. Various techniques have been proposed to enhance speech quality in throat 
microphone recordings, including Mel-frequency cepstral coefficients (MFCC), Linear Predictive Cepstral coefficients 
(LPCC) and Perceptual Linear Prediction (PLP)[3][4][5]. Each technique addresses different aspects of noise reduction 
and speech clarity, yet their comparative effectiveness in the context of throat microphones remains underexplored.  

Objectives 

This study aims to conduct a comprehensive comparative analysis of MFCC, LPCC, and PLP techniques for enhancing 
speech captured by throat microphones. The primary objectives include evaluating the performance of these techniques 
in terms of noise reduction and speech quality enhancement. By identifying strengths and limitations of each method, 
this research seeks to provide valuable insights for optimizing speech enhancement strategies in throat microphone 
applications.  

2. Literature Review 

A throat microphone speech enhancement techniques aim to improve the quality and intelligibility of speech signals 
captured by throat microphones. This section provides an overview of well-known techniques—Mel-frequency cepstral 
coefficients (MFCC), Linear Predictive Coding coefficients (LPCC) and Perceptual Linear Prediction (PLP), and reviews 
previous studies on their application in enhancing speech from throat microphones. 

2.1. Mel-frequency cepstral coefficients (MFCC) 

Mel-Frequency Cepstral Coefficients (MFCC) [3] are a feature extraction technique in speech processing that captures 
the power spectrum of audio signals to mimic human auditory perception.  

The process starts with a pre-emphasis filter y[n]=x[n]−αx[n−1], typically with α=0.97, followed by framing, then 

windowing by hamming window windowing using w[n]=0.54-0.46cos( 
2πn

𝑁−1
)and then computing the FFT to obtain the 

power spectrum P[k]=|X[k]|2.The power spectrum is passed through a Mel-scale filter bank, where the Mel scale is 

defined as m=2595log10 (1 + 
f

700
). 

The logarithm of the filter bank output is then transformed using the Discrete Cosine Transform (DCT) to produce the  

MFCCs: ∑ 𝑙𝑜𝑔(xm)𝑀
𝑚−1 cos[

πn (0−0.5)

𝑀
] ………….. (i) 

These coefficients are widely used in speech recognition, speaker identification, and audio classification due to their 
ability to effectively capture the characteristics of speech signals. 

2.2. Linear Predictive Cepstral coefficients (LPCC) 

Linear Predictive Cepstral Coefficients (LPCC) [4] are derived from the Linear Predictive Coding (LPC) method, which 
models the speech signal as a linear combination of its past samples.  

The LPC analysis yields the predictor coefficients ai by minimizing the prediction error e[n]=x[n]−∑  
𝑝
𝑖=1 ai x[n-i] , where 

x[n] is the speech signal and p is the order of the predictor. The LPCCs are then calculated from these LPC coefficients 
using the recursion  

ck= 𝑎k + ∑  𝑘−1
𝑖=1 (

i

k
) ciak-i for k≥ 1 and c0 = log (E)  ……………..(ii) 

Where E is the prediction error energy. This transformation produces cepstral coefficients that are more robust for 
speech recognition tasks. LPCCs are widely used in speech and speaker recognition due to their ability to effectively 
represent the spectral properties of the speech signal. 
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2.3. Perceptual Linear Prediction (PLP) 

Perceptual Linear Prediction (PLP) [5] is a feature extraction technique in speech processing that models the auditory 
system's perception of sound. The process starts with a pre-emphasis filter and then divides the speech signal into 
frames, followed by windowing and applying the Fast Fourier Transform (FFT) to obtain the power spectrum. The 
power spectrum is then warped to the Bark scale using  

wb =6sinh-1 (
w

600
)  …………… (iii) 

Where ω is the frequency in Hz. The warped spectrum is smoothed by convolving it with a critical-band masking curve, 
and then downsampled to obtain the auditory spectrum. Finally, the Linear Predictive Coding (LPC) model is applied to 
the auditory spectrum, resulting in the PLP coefficients, which are more closely aligned with human hearing 
characteristics and improve the robustness of speech recognition systems. 

2.4. Previous Research 

Previous research has explored the effectiveness of these techniques in enhancing speech from throat microphones: 

 MFCC: Studies have shown that MFCCs effectively reduce noise and enhance speech intelligibility in throat 
microphone recordings, making them suitable for applications in noisy environments [1] [3]. 

 LPCC: Research indicates that LPCCs can accurately model the vocal tract and improve speech quality by 
minimizing noise interference in throat microphone signals [1] [4]. 

 PLP: Studies have highlighted PLP's capability to enhance speech quality by emphasizing perceptually relevant 
features and suppressing noise components in throat microphone recordings [5]. 

These techniques have been applied in various contexts, demonstrating their potential to enhance speech quality in 
challenging acoustic environments. However, comparative studies evaluating their performance specifically in throat 
microphone applications are limited, underscoring the need for further investigation to identify the most effective 
technique under different noise conditions and signal characteristics. 

3. Methodology 

3.1. Data Collection 

This research utilizes a dataset based on the ATR503 phoneme balance statements, designed for equal phoneme 
representation. The ATR503 dataset includes 10 sets (A to J) with a total of 503 sentences. Recordings were made using 
close-talk and throat microphones in a soundproof room, involving 14 speakers (8 males and 6 females). Initially 
recorded at 44 kHz, the audio was downsampled to 16 kHz for standardization. 

 

Figure 1 Internal diagram of various coefficient findings algoithms 

In fig-1, show the internal diagram of various coefficient finding algorithm. 
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3.2. Feature Extraction 

3.2.1. Mel-frequency cepstral coefficients (MFCC) 

The throat microphone signal is loaded from the dataset, and the sampling rate is set to 16kHz. The setup includes 13 
MFCC coefficients, a frame length of 25 ms, a frame shift of 10 ms, 26 Mel filter banks, and a pre-emphasis filter 
coefficient of 0.97. A pre-emphasis filter is applied to the signal to amplify high frequencies, thereby improving the 
signal-to-noise ratio. The speech signal is segmented into overlapping frames of 25 ms with a 10 ms shift. Each frame is 
multiplied by a Hamming window to reduce spectral leakage. The power spectrum for each frame is computed using 
the Fast Fourier Transform (FFT) with 512 points. A Mel filterbank is created to convert frequencies to the Mel scale, 
mapping them to FFT. The filterbank is then applied to the power spectrum, followed by taking the logarithm of the 
energies. The Discrete Cosine Transform (DCT) is performed to obtain the MFCCs, yielding 13 coefficients per frame. 
The process also attempts to reconstruct the audio signal by applying the inverse DCT and inverse filterbank to the 
MFCCs. The frames are overlapped and combined to reconstruct the signal, followed by normalization. The 
reconstructed speech signal is then saved as an audio file with the appropriate sampling rate for correct playback. The 
figure-2 shows three spectrograms, which are visual representations of sound signals. Each spectrogram displays the 
frequency content of a sound over time. The top spectrogram represents the sound captured by a close microphone, the 
middle one represents the sound captured by a throat microphone, and the bottom one represents the MFCC (Mel-
frequency cepstral coefficients) signal derived from the throat microphone.  

 

Figure 2 Spectrogram comparison among three different speech signal 

3.2.2. Linear Predictive Coding coefficients (LPCC) 

The throat microphone signal is loaded from the dataset, and the sampling rate is set to 16 kHz. The signal is normalized 
by dividing each sample by the maximum absolute value, ensuring the amplitude ranges from -1 to 1 for consistent 
signal processing. The frame length is defined as 256 samples, with an overlap of 128 samples between consecutive 
frames. A hamming window of length 256 is applied to each frame, reducing spectral leakage and improving frequency 
analysis. The order of the Linear Predictive Coding (LPC) model is set to 12. LPC coefficients are computed 13 for each 
frame using the autocorrelation method and then converted to Linear Predictive Cepstral Coefficients (LPCC). This 
transformation helps in efficiently representing and analyzing speech signals by converting LPC coefficients to cepstral 
coefficients, which represent the spectral envelope of the signal in the cepstral domain. A vector is initialized to store 
the reconstructed signal. For each frame, the LPCC coefficients are extracted and converted back to LPC coefficients. A 
synthesis filter is applied using these LPC coefficients to reconstruct the frame. The starting and ending indices 
determine where the reconstructed frame is placed within the overall reconstructed signal. The reconstructed frame is 
added to the signal, completing the reconstruction process by implementing the inverse transformation from the 
cepstral to the LPC domain, which is essential for speech signal reconstruction. The reconstructed speech signal is then 
saved as an audio file with the appropriate sampling rate for correct playback. The figure-3 shows three spectrograms, 
which are visual representations of sound signals. Each spectrogram displays the frequency content of a sound over 
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time. The top spectrogram represents the sound captured by a close microphone, the middle one represents throat 
microphone, and the bottom one represents the LPCC signal derived from the throat microphone. 

 

Figure 3 Spectrogram comparison among three different speech signal 

3.2.3. Perceptual Linear Prediction (PLP) 

 

Figure 4 Spectrogram comparison among three different speech signal 

The throat microphone signal is loaded from the dataset, and the sampling rate is set to 16 kHz. Parameters for LPC 
analysis are defined to the frame length is set to 0.025 seconds, and the frame shift to 0.010 seconds. The LPC order is 
specified as 12, determining the number of coefficients computed for each frame of the speech signal. A high-pass filter 
is applied to enhance high frequencies, improving the stability of LPC analysis by balancing the speech signal spectrum. 
The pre-emphasized speech signal is divided into overlapping frames with a specified overlap between consecutive 
frames. LPC coefficients 13 computed for each frame using the autocorrelation method and recursion. The 
autocorrelation of each frame is determined, followed by applying recursion to calculate LPC coefficients. These 
coefficients are used with random noise excitation to synthesize speech frames. Random noise is filtered through each 
LPC filter to produce synthesized speech frames. The overlapping synthesized frames are combined to reconstruct the 
full synthesized speech signal, enhancing continuity and smoothness. The synthesized speech signal is then saved as an 
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audio file with the appropriate sampling rate for correct playback. The figure-3 shows three spectrograms, which are 
visual representations of sound signals. Each spectrogram displays the frequency content of a sound over time. The top 
spectrogram represents the sound captured by a close microphone, the middle one represents throat microphone, and 
the bottom one represents the PLP signal derived from the throat microphone. 

It is observed from fig 2-4 that in throat microphone speech high frequencies are totally missing which is significantly 
restored in the enhanced spectrogram by MFCC, LPCC and PLP coefficients. 

4. Experimental Setup 

4.1. Tools and Software 

 Programming Languages: The experiments are implemented using MATLAB. MATLAB is utilized for its 
extensive signal processing toolboxes 

 Speech Processing Toolboxes: MATLAB's Signal Processing Toolbox for feature extraction (MFCC, LPCC, PLP) 
and speech enhancement algorithm development. 

 Development Environment: Experimentation and analysis are conducted on high-performance computing 
systems equipped with multicore processors to ensure efficient processing of large datasets and complex 
algorithms. 

5. Results and discussion 

5.1. Signal-to-Noise Ratio (SNR) 

Quantifies the ratio of signal power to noise power before and after speech enhancement. Higher SNR values indicate 
better noise reduction and improved speech clarity [7]. During this experiment, the environmental noise is picked up 
by the CM which is around 5 dB .The figure-5 shows the signal to noise ratio (SNR) in decibels (dB) for CM (at 5dB SNR), 
TM speech and enhanced speech by MFCC, LPCC and PLP coefficients. The highest SNR is achieved by the LPCC signal, 
followed by the TM signal. The lowest SNR is achieved by the MFCC signal. This indicates that the LPCC signal has the 
best performance in terms of noise reduction. The other signals have lower SNRs, which suggests that they may have 
more noise present in the signal. 

 

Figure 5 SNR Comparison among CM, TM speech and enhanced speech by MFCC, LPCC and PLP coefficients 
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5.2. Perceptual Evaluation of Speech Quality (PESQ) 

 Assesses the perceived quality of enhanced speech compared to the original signal. PESQ scores range from 1 (poor) to 
5 (excellent), providing a subjective measure of speech enhancement effectiveness [6]. 

 

Figure 6 PESQ Score comparison among CM, TM speech and enhanced speech by MFCC, LPCC and PLP coefficients 

In the above figure 6, shows the PESQ scores for CM (at 5dB SNR), TM speech and enhanced speech by MFCC, LPCC and 
PLP coefficients. The PESQ score is a measure of speech quality, with higher scores indicating better quality.  

It is observed from fig 6 that when environmental noise is at 5 dB SNR, the Close Microphone speech signal, it’s PESQ 
score becomes the lowest compared to the other speech signals. The Throat Microphone signal has a PESQ score of 
1.8671, indicating that it has significantly lower speech quality than the Close Microphone. 

The MFCC signal has a PESQ score of 2.5215, indicating that it has slightly better speech quality than the Throat 
Microphone. The LPCC signal has a PESQ score of 3.8348, indicating that it has slightly lower speech quality than the 
Close Microphone. 

Finally, the PLP signal has a PESQ score of 2.8795, indicating that it has lower speech quality than both the MFCC and 
LPCC signals. Overall, the results suggest that the LPCC signal offers the best speech quality, while the Close Microphone 
signal with noise added provides the worst quality. 

5.3.  LPC Spectra 

In the following figure-7, The LPC spectra [9] comparison reveals significant differences in the frequency characteristics 
and magnitude responses of the various signals: 

In the Close Microphone (CM) signal, the blue curve exhibits the highest peaks in the low-frequency range (below 2000 
Hz), indicating that the close microphone captures more energy in these lower frequencies compared to the other 
signals. However, when 5 dB of noise is added to the close microphone signal, its performance significantly degrades. 

In Throat Microphone (TM), the orange curve exhibits a peak around 1000 Hz, which is typical for throat microphones 
as they emphasize certain lower-frequency components and attenuate higher frequencies at 5000 Hz. 

In the MFCC and PLP signals, the spectral curves (purple and green) exhibit similar patterns, indicating smoother 
spectral characteristics. However, MFCC fails to capture high-frequency components beyond 3000 Hz, while PLP 
retrieves frequencies only up to 7000 Hz. 
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In the LPC spectra comparison reveals that the LPCC (Linear Predictive Cepstral Coefficients) curve demonstrates 
superior performance in retaining important frequency components, particularly in the lower frequency range. The 
LPCC spectrum (blue curve) not only closely aligns with the Close Mic (CM) signal but also successfully captures the 
missing frequency components of the Throat Mic (TM) signal, which are otherwise attenuated in the MFCC and PLP 
spectra. 

The LPCC (Linear Predictive Cepstral Coefficients) spectrum demonstrates superior performance by effectively 
retaining critical frequency components, particularly in the lower frequency range. LPCC successfully retrieves 
frequency components that are attenuated in the Throat Microphone (TM) signal. In contrast, MFCC fails to capture 
high-frequency components beyond 3000 Hz, and PLP only retrieves frequencies up to 7000 Hz. Overall, LPCC 
outperforms other methods by effectively preserving and recovering important frequency details that are otherwise 
lost. 

 

Figure 7 LPC Spectra comparison among six speech signals 

5.3.1. Subjective Study of Speech Intelligibility 

To assess speech intelligibility, a subjective study is conducted with a diverse group of 15 participants where 9 males 
and 6 females. Each participant listen to a set of speech samples and rated the intelligibility on a scale from 1 to 10, with 
1 being completely unintelligible and 10 being perfectly intelligible. The ratings are collected through a structured 
questionnaire. 

The following table-1 summarizes the ratings provided by each participant: 

Table 1 Subjective Study of Speech Intelligibility 

No. of Speech 
Participant Name Average Rating (1-10) 

Throat Microphone MFCC Signal LPCC Signal PLP Signal 

25 Different Speech 

Sabah 8 9 8 7 

Mokrema 9 7 9 6 

Labony 8 9 8 7 

Sabuj 7 8 9 8 

Munna 9 9 8 7 

Sabina 8 7 8 9 

Tarikul 9 8 9 8 

Kabir 9 9 9 7 

Riyad 7 8 8 6 
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Rekha 8 7 8 9 

Mehedi 8 9 9 7 

Mashrafee 7 7 9 9 

Raiyan 8 6 8 8 

Jaima 9 9 10 7 

Zalal 8 9 7 9 

The average rating across all participants was calculated to provide an overall measure of speech intelligibility. The 
mean [8] rating of Throat Microphone: 

Mean Rating (TM) =
8+9+8+7+9+8+9+9+7+8+8+7+8+9+8

15
 =8.134 

Mean Rating (MFCC) =
9+7+9+8+9+7+8+9+8+7+9+7+6+9+9

15
 =8.06 

Mean Rating (LPCC) =
8+9+8+9+8+8+9+9+8+8+9+9+8+9+8

15
 =8.46 

Mean Rating (PLP) =
7+6+7+8+7+9+8+7+6+9+7+9+8+7+9

15
 = 7.60 

The average ratings from the subjective study for Throat Microphone (8.134), MFCC (8.06), LPCC (8.46), and PLP (7.60) 
suggest that LPCC-enhanced speech is generally perceived as highly intelligible. The ratings, which range from 6 to 10, 
reflect some variability in how different participants perceive speech intelligibility. This variability could be influenced 
by individual differences in hearing ability, familiarity with the accent, or the quality of the listening environment. 
Notably, participant Zalal awarded a perfect rating of 10 to the LPCC speech signal, likely due to its superior clarity, 
naturalness, and overall intelligibility. In contrast, participant Raiyan gave the lowest rating of 6 to the PLP speech 
signal, possibly due to perceived issues with clarity or increased distortion. 

These findings highlight the importance of considering individual differences when evaluating speech intelligibility. The 
data suggests that LPCC consistently achieves higher average ratings compared to the other methods.  

6. Conclusion 

In noisy environments, throat microphones (TM) are advantageous for capturing speech directly from the throat, but 
they often struggle with clarity and intelligibility compared to traditional microphones. This study addressed the 
challenge of enhancing TM speech quality by comparing three prominent feature extraction techniques: Mel-frequency 
cepstral coefficients (MFCC), Linear Predictive Cepstral Coefficients (LPCC), and Perceptual Linear Prediction (PLP). We 
evaluated these techniques using the ATR503 dataset, which includes recordings from both throat and close-talk 
microphones. 

Our results demonstrated that LPCC significantly outperforms MFCC and PLP in enhancing speech captured by throat 
microphones. LPCC achieved an average Signal-to-Noise Ratio (SNR) improvement of 3 dB and led to substantial 
increases in Perceptual Evaluation of Speech Quality (PESQ) scores, indicating better speech clarity and intelligibility. 
Subjective evaluations further support these findings, with LPCC receiving the highest mean rating for clarity and 
intelligibility. 

Despite these advancements, our study has limitations. The performance of LPCC might vary with different types of 
noise and acoustic conditions not covered in this study. Future research could explore these variations and investigate 
other feature extraction techniques or hybrid methods to further enhance speech quality. Additionally, applying these 
techniques to real-world applications and larger datasets could provide more comprehensive insights into their 
effectiveness. 

Overall, this research provides a robust foundation for optimizing speech enhancement techniques for throat 
microphones and highlights LPCC as a particularly effective method. Further exploration and refinement of these 
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techniques could lead to even greater improvements in speech intelligibility and quality in challenging acoustic 
environments 
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