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Abstract 

The historical origins of foundational mathematical principles often lie obscured in the past. Among the luminaries in 
this nebulous landscape were Vedic mathematicians like Baudhāyana, Bhāṣkarācārya, Brahmagupta, Aryabhata, Pāṇini, 
Kātyāyana, and Āpastamba, eminent figures and sages of their time. Baudhāyana, in particular, is revered for his seminal 
contributions, prominently through the Baudhāyana Sulba Sūtra. This compendium of mathematical and ritualistic 
precepts predates the. The Baudhāyana Sulba Sūtra text belongs to the ritualistic ethos of Vedic Hinduism, yet it contains 
profound geometric theorems that expose the multifaceted genius of Baudhāyana. A scholarly endeavor has been an 
exegetical exercise on the mathematical corpus left by Baudhāyana, which throws new light on his pivotal role in 
shaping the contours of mathematical discourse within the antiquity of our civilization. This research helps us to enrich 
our knowledge about Vedic mathematical thinking and its intricate relationship with cultural and spiritual traditions. 

Keywords: Vedic Mathematics; Baudhāyana Theorem; Sulba Sutras; Ancient Geometry; Mathematical History; Vedic 
Rituals; Dharma Sūtras 

1 Introduction 

The study of six particular divisions played a dominating role in the enormity of this ancient Vedic civilization. Of these, 
Kalpa was fundamental and emanated into three sub-divisions, namely Griha Sūtra, Dharma Sūtra, and Shrauta Sūtra. 
Each of these sub-divisions helped in different aspects of Vedic life concerning domestic affairs, social conventions, and 
the complicated rituals and procedures of sacrifice at the center of Vedic tradition. However, within the Shrauta Sūtra 
area, the role of Shulba Shastras was of tremendous importance. It mainly emphasized the accurate construction of 
altars and ritualistic arenas, without which the Vedic sacrifices couldn't be made. Such constructions in those times 
should have comprised yantras, altars, and sacrificial areas built with exactness along the geometric principles of the 
Shulba Sūtras. The shulbhakaras, or scholars of Shulba, who were strict perfectionists, emphasized the belief that even 
very slight deviations in measurement might disrupt the sanctity of the ritual.  

The Shulba Sūtras are supposed to be meticulous guidelines and principles of geometry for constructing sacred altars 
and ritualistic arenas. As a result, these scriptures bring to life not only profound insights into the cultural, spiritual, and 
mathematical heritage of the ancient Hindus but also make visible the lasting legacy of Vedic wisdom on the one hand, 
with its profound significance of geometrical accuracy in the performance of sacred rites. Baudhāyana was a time in the 
history of Vedic mathematics and, actually, generally, in the history of mathematics. His contribution to the field of 
geometry and mathematical thinking is profound. The Baudhāyana Sulba Sūtra is one of his most famous works, which 
shows erudition where elements of geometry are entwined with the ritualistic practices of Vedic Hinduism. 

The Baudhāyana Sulba Sūtra, part of the larger corpus of Shulba Sūtras, emerges from the cultural milieu of Vedic 
society, where intellectual inquiry coalesced with spiritual reverence. In this context, Baudhāyana's mathematical 
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treatises take on a multifaceted significance, offering practical insights into altar construction while delving into the 
intricacies of geometric principles. 

At the heart of Baudhāyana's mathematical legacy lies his elucidation of the nowadays called, Pythagorean theorem, 
centuries before its formalization by Pythagoras in the Western tradition. Within the Baudhāyana Sulba Sūtra, Sanskrit 
shlokas encapsulate geometric truths that resonate with the essence of the theorem. Baudhāyana's numerical and 
geometric proofs predate those of his Greek counterpart, challenging conventional narratives of mathematical history 
and underscoring the universality of mathematical principles across cultures.  

For example:  

The statement "dīrghasyākṣaṇayā rajju: pārśvamānī, tiryaDaM mānī, cha yatpṛthagbhUte kurutastadubhayāṅ karoti” 
encapsulates a profound geometric insight attributed to the ancient Vedic mathematician Baudhāyana, revealing the 
essence of what is now known as the Pythagorean theorem. This theorem, foundational to the understanding of 
geometry, asserts that in a right-angled triangle, the square of the length of the hypotenuse is equal to the sum of the 
squares of the lengths of the other two sides. 

Baudhāyana's elucidation of this principle predates the widely attributed discovery by Pythagoras by centuries, yet its 
significance resonates deeply within the realm of mathematical discourse. By articulating the relationship between the 
sides of a right triangle in such succinct terms, Baudhāyana not only established a fundamental geometric truth but also 
provided a means for its intuitive comprehension. 

Furthermore, In the mathematical treatise attributed to Baudhāyana, and further elaborated in the Āpastamba 
Sulbasūtra, a geometric problem is presented, known as "samasya dvikaraṇī." This problem entails increasing a given 
quantity by a third of itself, utilizing a specific geometric construction. 

The problem is articulated as follows: "pramāṇaṃ tṛtīyena vardhayet tac caturthenātmacatustriṃśonena saviśeṣaḥ," 
which can be translated as "Draw half its diagonal about the centre towards the East-West line; then describe a circle 
together with a third part of that which lies outside the square." 

Implicit in this statement is the methodology for augmenting a given length by one-third of itself. Baudhāyana provides 
an elegant solution involving geometric constructions and principles. 

Central to the problem is the concept of the diagonal of a square and its relation to the sides of the square. Baudhāyana's 
formulation offers insight into the geometric properties of squares and circles, culminating in a method for increasing 
a given length by a specified fraction. 

This problem not only showcases Baudhāyana's geometric acumen but also highlights the sophistication of ancient 
Vedic mathematical thought, particularly in the context of geometric constructions and problem-solving techniques. 
Baudhāyana's contributions extend beyond the mere statement of the theorem. Within the corpus of the Śulbasūtras, 
alongside other ancient Vedic rishis mathematicians like Āpastamba, Baudhāyana offers both numerical and 
geometrical proofs of the theorem. These proofs, often overlooked in favour of later Euclidean geometric 
demonstrations, underscore the depth of mathematical understanding present in ancient Vedic mathematical treatises. 

Moreover, Baudhāyana's mathematical insights encompass a broad spectrum of geometric principles, including 
constructions involving squares, rectangles, and circles. These geometric propositions, detailed within the Śulbasūtras, 
not only serve mathematical inquiry but also find practical application in the construction of ritualistic altars, reflecting 
the interdisciplinary nature of ancient Vedic mathematical thought. 

Thus, a comprehensive examination of Baudhāyana's mathematical legacy unveils not only his foundational role in the 
development of geometric principles but also his profound influence on the intersection of mathematics, ritualistic 
practices, and philosophical contemplation within the cultural milieu of Vedic civilization. 

Moreover, Baudhāyana's contributions extend beyond the Pythagorean theorem, encompassing a myriad of geometric 
constructions and mathematical innovations. His sūtras expound upon the transformation of shapes, the calculation of 
areas, and the estimation of π, showcasing a sophisticated understanding of mathematical principles grounded in 
practical applications. From squaring the circle to approximating square roots, Baudhāyana's mathematical prowess 
transcends mere calculation, embodying a holistic worldview that integrates ritual, philosophy, and mathematics. 
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The enduring impact of Baudhāyana's work reverberates through the corridors of time, influencing subsequent 
generations of mathematicians and scholars. By reclaiming Baudhāyana's rightful place in the pantheon of mathematical 
pioneers, we enrich our understanding of the diverse intellectual traditions that have shaped human civilization. In 
reimagining the narrative of mathematical history, we illuminate the profound insights of visionaries like Baudhāyana, 
whose contributions continue to inspire mathematical inquiry and cultural exploration. 

1.1 Historical Context 

Baudhāyana's mathematical endeavors flourished within the vibrant milieu of ancient Vedic society, characterized by a 
profound amalgamation of intellectual inquiry and spiritual reverence. This epoch was marked by the meticulous 
observance of ritualistic practices and philosophical contemplation, providing a fertile backdrop for the cultivation of 
mathematical concepts. 

Embedded within the intricate fabric of Vedic tradition were the Vedanga, comprising six divisions aimed at facilitating 
the understanding and practice of Vedic rituals. As mentioned before among these divisions, Kalpa held a prominent 
position, further subdivided into Griha Sūtra, Dharma Sūtra, and Shrauta Sūtra. Of these, nestled within the broader 
framework of Shrauta Sūtras, assumed particular significance, as it delved into the meticulous construction of altars and 
ritualistic arenas essential for Vedic sacrifices. 

The Shulba Sūtras, including those attributed to luminaries such as Baudhāyana, Apastamba, Manava, and Katyayana, 
served as comprehensive manuals for the precise execution of geometrically accurate constructions. These texts 
elucidated the intricate procedures for the creation of yantras, altars, and sacrificial areas, emphasizing the paramount 
importance of precision in measurement. Shulba scholars, or shulbhakaras, held steadfast to the belief that even the 
slightest deviation from prescribed measurements could yield adverse effects on the efficacy of sacrifices and rituals. 

In the ancient Vedic era, an extensive array of Shrauta and Shulba Sūtras is believed to have existed, numbering between 
1131 to 1137. However, the passage of time has seen the preservation of only a handful of these invaluable texts. Among 
the surviving Shulba Sūtras are those of Apastamba, Baudhāyana, Manava, Katyayana, Maitrayaniya, Varaha, Vadhula, 
and Hiranyakeshin, each offering unique insights into the intricate interplay between mathematics and ritualistic 
practices. 

The enduring legacy of Baudhāyana and his contemporaries lies not only in their mathematical prowess but also in their 
profound influence on the cultural and intellectual fabric of the Vedic Period. Through their meticulous documentation 
and preservation of geometric principles, these luminaries laid the foundation for the meticulous execution of Vedic 
rituals while imparting invaluable insights into the harmonious synthesis of spirituality and mathematical inquiry. Thus, 
the Shulba Sūtras stand as enduring testaments to the ingenuity and wisdom of ancient Vedic mathematicians, 
illuminating the rich tapestry of human knowledge and tradition. 

1.2 Pythagorean Theorem: A Baudhāyanian Perspective 

Baudhāyana's mathematical contributions prefigure the Pythagorean theorem, establishing a foundational narrative 
that predates Pythagoras by centuries. Within the Baudhāyana Sulba Sūtra, he articulates geometric principles that 
mirror the essence of the theorem, offering both numerical and geometric demonstrations. This article delves into 
Baudhāyana's pioneering insights, showcasing his theorem's elegance through Sanskrit shlokas and accompanying 
calculations. 

At the heart of ancient Vedic mathematical heritage lies Baudhāyana's seminal elucidation of what would later be 
recognized as the Pythagorean theorem. Contrary to conventional historiography attributing the theorem solely to 
Pythagoras, Baudhāyana's contributions, documented in the Baudhāyana Sulba Sūtra, present a compelling narrative of 
mathematical discovery preceding the Hellenic era. Through a meticulous analysis of Baudhāyana's theorem, this article 
unveils the numerical and geometric foundations underlying his profound insights. 

1.3 Numerical Proof 

Baudhāyana's theorem, encapsulated in Sanskrit shlokas as mentioned in the introduction, offers a numerical 
demonstration of the Pythagorean relationship. For instance, consider a right-angled triangle with sides of lengths a, b, 
and c (the hypotenuse). Baudhāyana's formulation, articulated in the Sulba Sūtra, provides a numerical calculation 
showcasing the equality 𝑎2 + 𝑏2 = 𝑐2 . By manipulating integers by Baudhāyana's prescribed method, one can verify 
the theorem's validity through direct computation. By manipulating integers by Baudhāyana's prescribed method, one 
can verify the theorem's validity through direct computation. 
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Figure 1 Right-angled triangle 

Consider a right-angled triangle with sides of lengths a, b, and c (the hypotenuse). According to Baudhāyana's 
formulation, the sum of the squares of the two shorter sides (𝑎2 + 𝑏2) is equal to the square of the hypotenuse (𝑐2). 

Let's illustrate this with an example: 

Suppose a=3 and b=4, we want to verify if 32 + 42 = 𝑐2 holds true. 

Using Baudhāyana's method, we have: 
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Finding the Area of a Square: 

Baudhāyana's sūtra provides a method for constructing a square with an area equal to that of a given rectangle. For 
example, let's consider a rectangle with sides of lengths 5 and 8 units. According to Baudhāyana's method, we can 
transform this rectangle into a square with the same area. 

The area of the rectangle is 52 × 82 = 40 square units. 

 

Finding the Area of a Circle: Baudhāyana's sūtra provides a method for constructing a circle with an area equal to that 
of a given square. For instance, let's consider a square with a side length of 6 units. According to Baudhāyana's method, 
we can transform this square into a circle with the same area. 

The area of the square is 62 × 62 = 36 𝑠𝑞𝑢𝑎𝑟𝑒 𝑢𝑛𝑖𝑡𝑠. 

 

1.4 Geometric Proof: 

In addition to its numerical manifestation, Baudhāyana's theorem finds geometric expression within the Sulba Sūtra. 
Through meticulous constructions and geometric diagrams, Baudhāyana illustrates the inherent relationship between 
the squares of the triangle's sides and the square of the hypotenuse. Geometrically, this is demonstrated by visualizing 
the squares constructed on each side of the right triangle and their collective arrangement, revealing the congruence 
implied by the theorem. 
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1.4.1 Diagram 

 

Figure 2 Diagram explanation 

Description: 

𝑨 (𝒂𝟐): 𝑆𝑞𝑢𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑜𝑛 𝑠𝑖𝑑𝑒 𝑎 𝑤𝑖𝑡ℎ 𝑎𝑟𝑒𝑎 𝑎2. 

𝑩 (𝒃𝟐): 𝑆𝑞𝑢𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑜𝑛 𝑠𝑖𝑑𝑒 𝑏 𝑤𝑖𝑡ℎ 𝑎𝑟𝑒𝑎 𝑏2. 

𝑪 (𝒄𝟐): 𝑆𝑞𝑢𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 𝑐 𝑤𝑖𝑡ℎ 𝑎𝑟𝑒𝑎 𝑐2. 

a: Length of side a. 
b: Length of side b. 
c: Length of hypotenuse c. 

Explanation: 

1.4.2 Squares on Sides 

Square A and B are placed side by side to form a rectangle with dimensions a×b. 

Square C is constructed on the hypotenuse c. 

1.4.3 Geometric Insight 

The area of square C (the square on the hypotenuse) is equal to the sum of the areas of squares A and B: 𝒄𝟐 =  𝒂𝟐 + 𝒃𝟐 

This visual diagram and description here illustrate the geometric construction used in Baudhāyana's theorem, showing 
how the squares of the sides of a right triangle relate to the square of its hypotenuse. Baudhāyana's theorem, as 
illustrated geometrically, visually demonstrates the relationship between the squares of the sides of a right triangle and 
the square of its hypotenuse. The meticulous construction and arrangement of squares A, B, and C on each side of the 
triangle reveal the inherent congruence implied by the theorem. 

This geometric approach complements the numerical verification and provides a deeper understanding of the theorem's 
validity through visual representation and geometric construction. 

Baudhāyana's formulation of the Pythagorean theorem stands as a testament to the enduring legacy of ancient Vedic 
mathematics. By presenting both numerical and geometric proofs, Baudhāyana not only anticipates Pythagoras but also 
enriches mathematical discourse with profound insights rooted in antiquity. As we delve deeper into the annals of 
mathematical history, it becomes increasingly evident that Baudhāyana's contributions constitute a cornerstone of 
geometric understanding, deserving recognition alongside Pythagoras and other luminaries of mathematical inquiry. 
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2 Comparative Analysis 

A comparative examination of Baudhāyana's theorem with later formulations by Pythagoras underscores its precedence 
in mathematical history. While Pythagoras is often credited with providing the first formal proof, Baudhāyana's 
numerical and geometric demonstrations offer compelling evidence of an earlier understanding. Moreover, 
Baudhāyana's theorem transcends cultural and historical boundaries, resonating with the universality of mathematical 
truths. 

The study of geometry and the discovery of fundamental mathematical truths, such as the relationship between the 
sides of a right triangle, have a rich historical context. Baudhāyana's theorem, found in the ancient Vedic text Sulba 
Sūtra, and Pythagoras' theorem, famously formulated in ancient Greece quite long after Baudhayana, both address the 
relationship between the sides of a right triangle. This comparative analysis explores the historical context, the 
formulations themselves, and the cultural implications of these theorems. 

2.1 Baudhāyana's Theorem: Historical Context and Formulation 

Baudhāyana's theorem is found in the Sulba Sūtra, as explained before is a collection of ancient Vedic mathematical 
texts dating back to 1000's of BCE. These texts are part of the larger corpus of the Vedas and represent some of the 
earliest known mathematical and geometric treatises in history. 

2.1.1 Historical Context 

 The Sulba Sūtras were composed by several ancient Vedic mathematicians, with Baudhāyana being one of the 
prominent figures. 

 These texts are primarily concerned with the construction of altars for Vedic rituals, which required precise 
geometric forms, but they also contain mathematical principles and calculations. 

2.1.1.1 Formulation: 

 Baudhāyana's theorem, as found in the Sulba Sūtra, states that the square of the hypotenuse of a right triangle 
is equal to the sum of the squares of the other two sides. Mathematically, it is expressed as: 𝒄𝟐 =  𝒂𝟐 +  𝒃𝟐 
where c is the length of the hypotenuse, and a and b are the lengths of the other two sides of the triangle. 

2.1.2 Numerical and Geometric Demonstrations 

 Baudhāyana's theorem is accompanied by both numerical calculations and geometric constructions in the Sulba 
Sūtras. 

 Numerically, the theorem is demonstrated through specific examples where the sides of the triangle are 
manipulated according to Baudhāyana's prescribed methods to verify the equality. 

 Geometrically, the theorem is illustrated by constructing squares on each side of the right triangle and showing 
that the area of the square on the hypotenuse c is equal to the combined areas of the squares on a and b. 

Proof 

 Pythagoras' theorem is typically presented with a formal proof using geometric arguments, often involving the 
construction of squares on each side of the triangle. 

 Euclid's Elements provides a deductive proof, showing that the area of the square on the hypotenuse equals the 
sum of the areas of the squares on the other two sides. 

2.1.3 Comparative Analysis 

2.1.3.1 Historical Precedence 

 Baudhāyana's theorem predates Pythagoras' theorem by several centuries, whereas Pythagoras lived around 
570-495 BCE. 

 This places Baudhāyana's theorem among the earliest known mathematical formulations of the relationship 
between the sides of a right triangle. 
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2.1.3.2 Formalism and Demonstration 

 While Pythagoras is often credited with providing the first formal proof of the theorem, but Baudhāyana's 
theorem includes numerical and geometric demonstrations in the Sulba Sūtras and predates any other 
mathematician. 

 Baudhāyana's method involves manipulating integers according to prescribed methods to verify the equality, 
whereas Pythagoras' approach involves a deductive geometric proof. 

2.1.3.3 Cultural and Mathematical Universality 

 Baudhāyana's theorem, rooted in ancient Vedic mathematical traditions, transcends cultural boundaries and 
resonates with the universality of mathematical truths. 

3 Comparative Examples and Demonstrations 

Example 1: Baudhāyana's Theorem 

Let's consider a right triangle with sides a=3 and b=4. We want to verify if 𝒂𝟐 + 𝒃𝟐 =  𝒄𝟐 holds true. 

 Construction of Squares: 

o Square on side a: 𝟑𝟐 =  𝟗 

o Square on side b: 𝟒𝟐 =  𝟏𝟔 

 Calculation of Hypotenuse c: 

o Using Baudhāyana's theorem:  

𝑪𝟐 =  𝟑𝟐 + 𝟒𝟐 =  𝟗 + 𝟏𝟔 =  𝟐𝟓 

𝑪 =  √𝟐𝟓 =  𝟓 

Therefore, 𝟑𝟐 + 𝟐𝟐 = 𝟓𝟐 holds true, confirming Baudhāyana's theorem. 

Example 2: Pythagoras' Theorem 

Let's use the same triangle as in Example 1 to demonstrate Pythagoras' theorem. 

 Construction of Squares: 

o Square on side a: 𝟑𝟐 =  𝟗 

o Square on side b: 𝟒𝟐 =  𝟏𝟔 

 Verification of Pythagoras' Theorem: 

o Using Pythagoras' theorem:  

𝑨𝟐 +  𝒃𝟐 =  𝟑𝟐 +  𝟒𝟐 =  𝟗 + 𝟏𝟔 =  𝟐𝟓 

𝑪𝟐 =  𝟓𝟐 =  𝟐𝟓 

Therefore, 𝟑𝟐 + 𝟐𝟐 = 𝟓𝟐, confirming Pythagoras' theorem. 

Baudhāyana's theorem (also referred Prameya) and Pythagoras' theorem both address the relationship between the 
sides of a right triangle, with Baudhāyana's theorem predating Pythagoras' formulation by several centuries. While 
Pythagoras is often credited with the first formal proof, Baudhāyana's theorem provides compelling evidence of an 
earlier understanding through numerical and geometric demonstrations in the Sulba Sūtras. Baudhāyana's theorem 
highlight the universality of mathematical truths, transcending cultural and historical boundaries. 

By examining these theorems comparatively, we gain insights into their historical context, formulation, and cultural 
implications, showcasing the rich heritage of mathematical discovery and its enduring impact on human knowledge. 



International Journal of Science and Research Archive, 2024, 12(01), 2888–2916 

2896 

4 Constructing a Circle with an Area Equal to that of a Given Square 

The figure below demonstrates a geometric method for constructing a circle with an area equal to that of a given square. 
This method is rooted in the principles outlined by ancient mathematician Baudhāyana in the Sulba Sūtras. Here’s a 
step-by-step explanation of how such a construction can be achieved: 

 

Figure 3 Square to circle Visualising 

4.1 Step-by-Step Construction 

 Initial Square Construction 

o Begin with a square ABCD with side length s. 

o The area of the square ABCD is 𝒔𝟐. 

 Drawing the Circle 

o To construct a circle with the same area as the square, we need a circle with an area equal to 𝒔𝟐. 

 Finding the Radius 

o The area of a circle is given by 𝝅𝒓𝟐. 

o Set the area of the circle equal to the area of the square: 𝝅𝒓𝟐 = 𝒔𝟐. 

o Solve for the radius r: 𝒓 = √
𝒔𝟐

𝝅
 = 

𝟖

√𝝅 
 

 Constructing the Circle 

o With the radius r calculated, use a compass to draw a circle with radius r centered at point P. 

 Geometric Construction Details 

o In the figure, point P is the center of the circle. 

o The radius r is drawn from P to a point on the circle (point S in this case). 

o The circle should intersect the sides of the square, maintaining the area equality. 

4.2 Visualization and Further Steps 

The dotted circle in the figure likely represents the circle with the same area as the square ABCD. 

The square ABCD is inscribed within the circle, ensuring that their areas are equal. 
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By ensuring the circle touches the square’s sides tangentially, the areas are visually confirmed to be equal. 

4.3 Numerical Example 

To make this more concrete, let's use an example with specific values: 

 Given Square: 

o Let the side length s of the square be 4 units. 

o Area of the square = 𝟒𝟐 =  𝟏𝟔 square units. 

 Radius of the Circle 

o Calculate the radius r using the formula r=
𝟖

√𝝅 
  

o Here, 𝒓 =
𝟒

√𝝅 
=

𝟒

𝟏.𝟕𝟕𝟐
=  𝟐. 𝟐𝟔 𝑼𝒏𝒊𝒕𝒔. 

 Drawing the Circle: 

o With a radius of approximately 2.26 units, draw a circle centered at P with this radius. 

 Verification 

o The area of the circle 𝝅𝒓𝟐 =  𝝅(𝟐. 𝟐𝟔)𝟐 =  𝟏𝟔 square units, confirming that the area of the circle is equal 

to the area of the square. 

Baudhāyana’s geometric construction for creating a circle with an area equal to a given square involves calculating the 
appropriate radius based on the area equivalence formula and then drawing the circle with that radius. The provided 
figure illustrates this process, where the square ABCD is transformed into a circle with an equivalent area, maintaining 
the mathematical harmony demonstrated in the Sulba Sūtras. This method exemplifies the advanced geometric 
understanding and innovative techniques of ancient Vedic mathematicians. 

5 Geometric Constructions and Mathematical Innovations 

Beyond the theorem, Baudhāyana's work encompasses a plethora of geometric constructions and mathematical 
innovations. His sūtras expound upon the transformation of shapes, the calculation of areas, and the estimation of π, 
showcasing a sophisticated understanding of mathematical principles. From squaring the circle to approximating 
square roots, Baudhāyana's mathematical prowess transcends mere calculation, embodying a holistic worldview that 
integrates ritual, philosophy, and mathematics. His work, encapsulated in the Sulba Sūtras, is a testament to the 
advanced mathematical understanding of ancient Vedic scholars. These texts not only provide numerical proofs but also 
delve deeply into geometric constructions and innovative mathematical techniques. 

5.1 Transformation of Shapes 

One of Baudhāyana's remarkable contributions is his exploration of geometric transformations. His sūtras detail 
methods for converting various shapes while maintaining their areas. For instance: 

 Squaring the Circle: Baudhāyana proposed methods for approximating the construction of a square with the 
same area as a given circle, an ancient problem known as "squaring the circle." Though an exact solution is 
impossible due to the transcendental nature of π, Baudhāyana's approximations were remarkably accurate for 
his time, as we already saw a numerical example above. 

 Doubling the Square: Baudhāyana also provided techniques for constructing a square with double the area of 
a given square, involving geometric methods and the use of specific proportions. 

To double the area of a given square, we need to construct a new square whose area is twice that of the original square. 
Here’s how Baudhāyana approached this problem: 

5.2 Step-by-Step Construction 

 Given Square: 
o Let the side length of the original square be s. 

o The area of the original square 𝑨𝟏 𝒊𝒔 𝒔𝟐. 

 Doubling the Area: 
o To double the area of the square, the new area A2 should be 𝟐 𝑿 𝒔𝟐. 

 Finding the Side Length of the New Square: 



International Journal of Science and Research Archive, 2024, 12(01), 2888–2916 

2898 

o Let the side length of the new square be t. 

o The area of the new square A2 is 𝒕𝟐. 

o Since A2= 2 X A1, we have 𝒕𝟐 =  𝟐 𝑿 𝒔𝟐 . 

Therefore, t = 𝒔 √𝟐  . 

 Geometric Construction: 

o Using a compass, we construct the new square with side length t = 𝒔 √𝟐  . 

5.3 Numerical Example and Verification 

 Given Square: 
o Suppose the side length of the original square s is 4 units. 

o The area of the original square 𝑨𝟏 =  𝟒𝟐  = 𝟏𝟔 square units. 

 Doubling the Area: 
o The area of the new square A2 should be 2×16=32 square units. 

 Finding the Side Length of the New Square: 

o 𝒕 = 𝟒√𝟐. 

o t= 4 X 1.414 = 5.656 units. 

 Verification: 
o The area of the new square 𝑨𝟐 =  𝒕𝟐. 

o 𝑨𝟐 =  (𝟓. 𝟔𝟓𝟔)𝟐 =  𝟑𝟐 square units. 

This confirms that the area of the new square is indeed double the area of the original square.  

 

Figure 4 Diagram Visualization 

5.4 Geometric Visualization 

Let’s visualize this process step-by-step: 

 Construct the Original Square: 
o Draw a square ABCD with each side s = 4 units. 

 Diagonal of the Original Square: 
o Calculate the diagonal ddd of the original square using the Pythagorean theorem: 

o 𝑫 =  √𝒔𝟐 + 𝒔𝟐  = s√𝟐 = 4√𝟐 = 5.656 units. 

 Constructing the New Square: 

o Using the diagonal d, construct a new square with side length t = 𝟒√𝟐  = 5.656 units. 

o Ensure that each side of the new square equals the diagonal of the original square. 
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5.4.1 Mathematical Verification 

Let's verify the areas mathematically: 

 Original Square: 
o Side length s = 4 units. 

o Area 𝑨𝟏 =  𝒔𝟐 =  𝟏𝟔 square units. 

 New Square: 
o Side length 𝒕 = 𝟒√𝟐  = 5.656 units. 

o Area A2 = 𝒕𝟐 = (𝟒√𝟐 )
𝟐

= 𝟒𝟐𝑿 𝟐 = 𝟏𝟔 𝑿 𝟐 = 𝟑𝟐 square units. 

This demonstrates that the new square has double the area of the original square. 

6 Geometric Proof 

In the geometric construction:  

 Draw the original square ABCD with side length s. 

 Draw the diagonal AC. 

 The length of the diagonal AC = 𝒔√𝟐 . 

 Use the length of AC to construct the new square. 

 

Figure 5 Square ABCD 

By constructing the new square with side length t = 𝒔√𝟐 , Baudhāyana’s method geometrically doubles the area of the 
original square, adhering to the principles laid out in the Sulba Sūtras. 

This example showcases Baudhāyana’s advanced understanding of geometry and his ability to solve complex problems 
using geometric constructions. 

6.1 Calculation of Areas 

Baudhāyana's Sulba Sūtras offer detailed procedures for calculating the areas of various geometric shapes: 

 Rectangles and Squares: The sūtras outline precise methods for calculating the area of rectangles and 

squares, essential for constructing Vedic altars. 

 Circles and Sectors: Baudhāyana provided formulas for estimating the areas of circles and sectors, including 

approximations of π to facilitate these calculations. 
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6.2 Estimation of π 

Baudhāyana's work includes an approximation of π, which is critical for calculating the circumference and area of 

circles. His approximation, 
𝟐𝟓

𝟖
= 𝟑. 𝟏𝟐𝟓 , demonstrates an early attempt to understand this fundamental constant. 

Let's demonstrate some mathematical calculations using Baudhāyana's approximation of π. 

6.3 Circumference of a Circle 

 Given Radius: 

o Radius (r): 7 units 

 Using Baudhāyana’s Approximation of π: 

o Π = 
𝟐𝟓

𝟖
= 𝟑. 𝟏𝟐𝟓 

 Circumference Calculation: 
o Circumference=2πr 

o Using π = 3.125: 

o Circumference = 2 X 3.125 X 7 = 21.875 = 43.75 units 

6.4 Area of a Circle 

 Given Radius: 
o Radius (r): 7 units 

 Using Baudhāyana’s Approximation of π = 3.125 

 Area Calculation: 
o Area = 𝝅𝒓𝟐 

o Area = 𝟑. 𝟏𝟐𝟓 × 𝟕𝟐 =  𝟑. 𝟏𝟐𝟓 𝑿 𝟒𝟗 =  𝟏𝟓𝟑. 𝟏𝟐𝟓 square units 

7 Comparison with Modern Value of π 

For further understanding between Baudhāyana’s approximation and the modern value of π, let's compare the results 
using the modern value of π (approximately 3.14159). 

7.1 Using Modern Value of π for Circumference 

 Given Radius: 
o Radius (r): 7 units 

 Using Modern Value of π: 
o Π = 3.141 

 Circumference Calculation: 
o Circumference = 2πr 

o Using π = 3.141 
o Circumference = 2 X 3.141 X 7 = 2 X 21.987 = 43.974 units 

7.2 Using Modern Value of π for Area 

 Area Calculation: 
o Area=𝝅𝒓𝟐 

o Using π = 3.141 

o Area = 𝟑. 𝟏𝟒𝟏 𝑿 𝟕𝟐 =  𝟑. 𝟏𝟒𝟏 𝑿 𝟒𝟗 =  𝟏𝟓𝟑. 𝟗. 𝟗 square units 

7.2.1 Summary 

 Circumference: 
o Using Baudhāyana’s π (3.125) : 43.75 units 

o Using Modern π (3.141) : 43.97 units 
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 Area: 
o Using Baudhāyana’s π (3.125) : 153.125 square units 

o Using Modern π (3.141) : 153.909 square units 

Although Baudhāyana’s approximation of π (3.125) looks slightly less accurate than the modern value of π (3.141), but 
Baudhāyana says this value to be asanna or aprox and still it provides a close estimate that was practical for use in 
ancient constructions and calculations. This approximation demonstrates an early and significant understanding of the 
constant π, contributing to the foundations of geometry and mathematics. 

7.3 Approximating Square Roots 

Baudhāyana's sūtras also address the approximation of square roots. He provided algorithms for finding the square root 

of numbers, a crucial operation for various geometric constructions. For example, his method for approximating √𝟐 is 
highly accurate and was used in constructing diagonals of squares and other geometric tasks. 

Baudhāyana's approximation for √𝟐  is given by:  

√𝟐 = 𝟏 +
𝟏

𝟑
+

𝟏

𝟑𝑿𝟒
−

𝟏

𝟑𝑿𝟒𝑿𝟑𝟒
 

Let's break this down step by step. 

First Term: 1 

Second Term: 
𝟏

𝟑
= 𝟎. 𝟑𝟑𝟑𝟑 

Third Term: 
𝟏

𝟑𝑿𝟒
=

𝟏

𝟏𝟐
= 𝟎. 𝟎𝟖𝟑𝟑 

Fourth Term: 
𝟏

𝟑𝑿𝟒𝑿𝟑𝟒
=

𝟏

𝟒𝟎𝟖
= 𝟎. 𝟎𝟎𝟐𝟒𝟓 

Calculation 

√𝟐 = 1+0.3333 + 0.0833 – 0.00245 

√𝟐 = 1.41615 

Modern Value of √𝟐  

The modern value of √𝟐  is approximately: 1.41421 

Baudhāyana's approximation for √𝟐  is remarkably close to the modern value. This accuracy was significant for ancient 
geometric constructions, and also said to be approx. by the author itself, for sacrificial arenas and alters including 
calculating the diagonal of squares and other geometric tasks. This demonstrates Baudhāyana's deep understanding 
and sophisticated methods in ancient mathematics, which were advanced for his time and had practical applications in 
geometry and construction. 

8 Contributions of Other Ancient Vedic Rishis 

Baudhāyana was not alone in his mathematical pursuits. Several other ancient Vedic rishis made significant 
contributions to mathematics, enriching the field with their innovations and insights. 

8.1 Āpastamba  

Āpastamba's Sulba Sūtra is another key text in the corpus of Vedic mathematics. His contributions include: 

 Detailed Geometric Constructions: Āpastamba's work focuses extensively on the construction of altars with 
precise geometrical shapes. 
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 Advanced Arithmetic: He provided rules for arithmetic operations, including the multiplication and division 
of fractions. 

Āpastamba's Sulba Sūtra, is a significant text in Vedic mathematics. His contributions include detailed geometric 
constructions and advanced arithmetic operations. Let's explore these contributions with examples. 

8.1.1 Geometric Constructions 

Āpastamba's Sulba Sūtra emphasizes the construction of altars with precise geometrical shapes, necessary for various 
Vedic rituals. These constructions required a deep understanding of geometry, including the use of right angles, squares, 
and circles. 

Example: Constructing a Square Altar 

To construct a square altar with a given area, Āpastamba would use specific geometric techniques: 

 Determine the Desired Area: Suppose the desired area of the square altar is 25 square units. 

 Calculate the Side Length: The side length s of the square is found using the formula: s = √𝐴𝑟𝑒𝑎 =  √25 = =
5 units 

 Construct the Square: Using a cord or rope marked at 5 units, the square can be constructed by ensuring each 
side is 5 units and all angles are right angles. 

This method showcases Āpastamba's practical application of geometric principles in constructing precise altars.  

8.1.2 Advanced Arithmetic 

Āpastamba also provided rules for arithmetic operations, including the multiplication and division of fractions, which 
were crucial for various calculations in Vedic rituals and daily life. 

Example: Multiplication of Fractions 

Āpastamba's rules for multiplying fractions are straightforward and can be demonstrated with a simple example.  

 Given Fractions: Suppose we want to multiply 
𝟐

𝟑
𝒃𝒚

𝟑

𝟒
 

 Multiplication Rule: Multiply the numerators together and the denominators together:  

 
𝟐

𝟑
𝑿

𝟑

𝟒
=

𝟐𝑿𝟑

𝟑𝑿𝟒
=

𝟔

𝟏𝟐
 

 Simplify the Fraction: Simplify 
𝟔

𝟏𝟐
 to its lowest terms: 

 
𝟔

𝟏𝟐
=

𝟏

𝟐
 

 Therefore, 
𝟐

𝟑
𝑿

𝟑

𝟒
=

𝟏

𝟐
 

8.1.3 Example: Division of Fractions 

The division of fractions follows the rule of multiplying by the reciprocal of the divisor. 

 Given Fractions: Suppose we want to divide 
𝟐

𝟑
𝒃𝒚

𝟑

𝟒
 . 

 Division Rule: Multiply 
𝟐

𝟑
 𝑏𝑦 𝑡ℎ𝑒 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝑜𝑓

𝟑

𝟒
 . 

 
𝟐

𝟑
 ÷

𝟑

𝟒
=

𝟐

𝟑
 𝑿 

𝟒

𝟑
 

 Multiplication: Multiply the fractions: 

 
𝟐

𝟑
𝑿

𝟒

𝟑
=

𝟐𝑿𝟒

𝟑𝑿𝟑
=

𝟖

𝟗
 

 Therefore, 
𝟐

𝟑
 ÷

𝟑

𝟒
=

𝟖

𝟗
 

8.1.4 Geometric Constructions 

 Āpastamba's Sulba Sūtra includes detailed instructions for constructing altars with precise geometrical shapes, 
such as squares. 

 Example: Constructing a square altar with an area of 25 square units, resulting in a side length of 5 units. 
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8.1.5 Advanced Arithmetic 

 Āpastamba provided rules for arithmetic operations, including the multiplication and division of fractions. 

 Example of Multiplication: 
𝟐

𝟑
𝑿

𝟑

𝟒
=

𝟏

𝟐
 

 Example of Division: 
𝟐

𝟑
 ÷

𝟑

𝟒
=

𝟖

𝟗
 

These examples illustrate the sophistication and practical applications of Āpastamba's mathematical rules, contributing 
significantly to the development of arithmetic and geometric knowledge in ancient Vedic Civilization. 

8.2 Kātyāyana 

Kātyāyana's Sulba Sūtra, which came later, builds upon the work of his predecessors. His contributions include:  

 Refinement of Geometric Methods: Kātyāyana refined the geometric constructions found in earlier texts, 
offering more accurate methods for constructing various shapes. 

 Further Approximations: He also worked on more accurate approximations of geometric quantities, 
improving upon the values used in previous texts. 

8.3 Pāṇini  

While primarily known for his work in linguistics, Pāṇini's grammatical treatise, the Ashtadhyayi, contains 
mathematical concepts: 

 Formal Grammar and Algebra: Pāṇini's use of rules and transformations in linguistics mirrors algebraic 
operations, showcasing an early form of symbolic logic and computation. 

8.3.1 Pāṇini's Contributions to Mathematics through Linguistics 

Pāṇini, primarily renowned for his monumental work in linguistics, the Ashtadhyayi, also contributed to the field of 
mathematics indirectly. His formal grammar and the use of rules and transformations in linguistics mirror algebraic 
operations, showcasing an early form of symbolic logic and computation. 

8.3.2 Formal Grammar and Algebra 

Pāṇini's Ashtadhyayi is a sophisticated system of grammatical rules that operate much like algebraic equations. His use 
of symbols, variables, and rules to generate valid sentences can be likened to the way mathematicians use symbols and 
operations to solve equations. 

Example: Transformations in Pāṇini's Grammar 

Pāṇini's grammar can be seen as a formal system that transforms input symbols (phonemes, morphemes) into output 
strings (words, sentences) using a set of production rules. This is analogous to algebraic transformations where 
variables are manipulated according to specific rules to solve equations. 

Let's consider an example from Pāṇini's grammar and draw parallels with algebraic operations. 

8.3.3 Pāṇini's Rule-Based System: 

In the Ashtadhyayi, Pāṇini uses a system of rules (Sūtras) to generate valid linguistic forms. For instance, consider the 
rule for forming the future tense in Sanskrit. The rule can be represented as: 

Verb+Future Marker→Future Tense Form 

If the verb is "gach" (to go), and the future marker is "syati," the future tense form will be "gachsyati" (he will go). 

8.3.4 Algebraic Transformation: 

Similarly, in algebra, we use transformation rules to simplify or solve equations. Consider the following algebraic 
expression: 

2x+3=11 
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To solve for x, we perform a series of transformations: 

2x+3−3=11 (Subtract 3 from both sides) 

2x = 8 

𝟐𝒙

𝟐
=

𝟖

𝟐
 (𝑫𝒊𝒗𝒊𝒅𝒆𝒅 𝒃𝒐𝒕𝒉 𝒔𝒊𝒅𝒆𝒔 𝒃𝒚 𝟐) 

𝒙 = 𝟒  

Just as Pāṇini's rules transform an initial verb into its future tense form, algebraic transformations convert the initial 
equation into its solution. 

8.3.5 Symbolic Logic and Computation 

Pāṇini's grammatical framework uses meta-rules and recursion, concepts fundamental to modern computer science 
and symbolic logic. These concepts can be illustrated through examples of rule application and recursive definitions. 

Example: Recursive Definitions 

Pāṇini's Recursive Rules 

In Pāṇini's system, certain rules are applied recursively to generate complex linguistic structures. For example, consider 
the rules for noun inflection: 

Noun Stem + Case Marker→ Inflected Noun 

Inflected Noun + Number Marker → Fully Inflected Noun 

If the noun stem is "bala" (child) and the case marker is "sya" (genitive case), and the number marker is "s" (singular), 
the fully inflected form will be "balasya" (of the child). 

Algebraic Recursion 

In algebra, recursion can be seen in the definition of sequences and series. For example, the Fibonacci sequence is 
defined recursively: 

𝑭(𝟎) = 𝟎, 𝑭(𝟏) =  𝟏  

𝑭(𝒏) =  𝑭(𝒏 − 𝟏) +  𝑭(𝒏 − 𝟐)𝒇𝒐𝒓 𝒏 ≥  𝟐  

Here, the value of each term in the sequence is defined in terms of the previous terms, just as Pāṇini's rules define the 
structure of a word in terms of its components. 

Hence, we can conclude, Pāṇini's Ashtadhyayi, while a grammatical treatise, embodies the principles of formal grammar 
and symbolic logic that are foundational to algebra and computation. His use of rules and transformations to generate 
linguistic forms parallels algebraic operations and recursive definitions in mathematics. 

By exploring the examples of verb transformation and recursive rules in Pāṇini's grammar, we can appreciate how his 
work anticipated many concepts that are central to modern mathematics and computer science. This cross-disciplinary 
influence underscores the profound depth and versatility of Pāṇini's contributions to human knowledge. 

8.4 Aryabhata  

Aryabhata, though from a later period, is a significant figure in Vedic mathematics. His contributions include: 

 Trigonometry and Algebra: Aryabhata introduced trigonometric functions and solutions to quadratic 
equations. 

 Approximation of π: He provided an extremely accurate approximation of π (3.1416) 
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Aryabhata, a prominent ancient Vedis mathematician and astronomer, made significant contributions to trigonometry, 
algebra, and the approximation of π. His work laid the foundation for many mathematical concepts used today. Below, 
we elaborate on his contributions with examples, including relevant Sanskrit shlokas and mathematical calculations. 

8.4.1 Trigonometry and Algebra 

Aryabhata introduced trigonometric functions and provided solutions to quadratic equations. His treatise, the 
"Aryabhatiya," includes several shlokas that outline these contributions. 

8.4.2 Trigonometry 

In the "Aryabhatiya," Aryabhata presents a table of sine values, which is one of the earliest known trigonometric tables. 
The sine function is referred to as "ardha-jya" or "half-chord." 

8.4.3 Sanskrit Shloka on Sine Values 

The following shloka from the "Aryabhatiya" provides the sine values for various angles: 

शर्वो धतृा षोडशभिस ्त्रिभििः नर्वततभििः सैकाभिरंशैिः क्रमात।् याम्येऽशुभििः पञ्चभिरि षष्टिभिर ्िगणािः षड्बलातन स्फुिम॥् śarvo dhṛtā 

ṣoḍaśabhis tribhiḥ navatibhiḥ saikābhiraṃśaiḥ kramāt, yāmyeʼśubhiḥ pañcabhiratra ṣaṣṭibhir bhagaṇāḥ ṣaḍbalāni 
sphuṭam.  

This shloka describes the method to calculate the sine values for angles using specific numbers. Aryabhata calculated 
the sine values for 24 equal intervals from 0 to 90 degrees. 

8.4.4 Example Calculation: 

To understand Aryabhata's sine values, let's consider the sine of 30 degrees, which is one of the values provided in his 
table. 

Modern value: 𝐬𝐢𝐧(𝟑𝟎°) =
𝟏

𝟐
= 𝟎. 𝟓 

Aryabhata's value for the sine of 30 degrees (or 1/12 of the circumference of a circle, considering he divided the circle 
into 24 equal parts) is: 

Aryabhata's sine values are presented in terms of the radius of the circle, which was typically considered to be 3438 
minutes (approximately equal to 57.2958 degrees, where 1 degree = 60 minutes). The sine values were calculated for 
angles in steps of 3.75 degrees (since 90/24 = 3.75). 

For the sine of 30 degrees (which is 8 steps of 3.75 degrees), Aryabhata's value would be close to 1719 minutes, as he 
calculated sine values for every 3.75 degrees and provided tabulated values. 

8.4.5 Calculation 

Given that 1 radian is approximately 3438 minutes, the modern sine of 30 degrees is 0.5. We can verify Aryabhata's 
value using the modern value of sine and the radian measure. 

Aryabhata’s sine value = 𝐬𝐢𝐧(𝟑𝟎°) 𝑿 𝟑𝟒𝟑𝟖 𝒎𝒊𝒏𝒖𝒕𝒆𝒔 

Using the modern sine value of 30 degrees: 

𝟎. 𝟓 𝑿 𝟑𝟒𝟑𝟖 = 𝟏𝟕𝟏𝟗 minutes 

Aryabhata's Value: 

According to Aryabhata's calculations: 

𝐬𝐢𝐧(𝟑𝟎°) = 𝟏𝟕𝟏𝟗 minutes 

This value, when converted back to modern terms, translates to: 
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𝐬𝐢𝐧(𝟑𝟎°) =
𝟏𝟕𝟏𝟗

𝟑𝟒𝟑𝟖
= 𝟎. 𝟓  

Thus, Aryabhata's value for the sine of 30 degrees is 1719 minutes, which matches the modern value of 0.5, 
demonstrating his remarkable accuracy. 

8.4.6 Summary: 

 Modern value of 𝐬𝐢𝐧(𝟑𝟎°) = 0.5 

 Aryabhata's value = 1719 minutes, which corresponds to the modern sine value of 0.5 

This accuracy showcases Aryabhata's profound understanding and precise calculations in trigonometry. 

8.4.7 Algebra 

Aryabhata also provided solutions to quadratic equations, which are equations of the form  

𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 

8.4.8 Sanskrit Shloka on Quadratic Equations 

क्र्वचचद्र्वगोष्छिन्निः स्यात ्क्रक्रयिः कृततिः स्यात।् kvacidvargocchinnaḥ syāt kriyaḥ kṛtiḥ syāt | 

8.4.9 Translation and Explanation 

This shloka explains the method for solving quadratic equations. Aryabhata's approach to solving these equations 
involves understanding the relationship between the coefficients and the roots of the equation. 

8.4.10 Example Calculation 

Consider the quadratic equation 𝟐𝒙𝟐 + 𝟑𝒙 − 𝟓 = 𝟎 

Using the quadratic formula: 

𝒙 =
−𝒃 ± √𝒃𝟐 − 𝟒𝒂𝒄

𝟐𝒂
 

For a = 2, b = 3 and c = -5: 

𝒙 =
−𝟑 ± √𝟑^𝟐 − 𝟒. 𝟐. (−𝟓)

𝟐. 𝟐
 

𝒙 =
−𝟑 ± √𝟗 + 𝟒𝟎

𝟒
 

𝒙 =
−𝟑 ± 𝟕

𝟒
  

Thus, the roots are: 

X = 1 and x = -2.5 

Aryabhata's method would similarly yield these roots through systematic computation. 

Approximation of π 

Aryabhata provided an extremely accurate approximation of π (3.1416), which is notable given the period in which he 
lived. His approximation is expressed in the "Aryabhatiya." 
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8.4.11 Sanskrit Shloka on π Approximation 

चतुर्थ ं शतसहस्रस्य ियोवर्वशंततरचधकािः। पङ्चाशत ् ियोदशैक्यािः पङ्चासन्निः पररचधिः || caturthaṃ śatasahasrasya 

trayoviṃśatiradhikāḥ | paṅcāśat trayodaśaikyāḥ paṅcāsannaḥ paridhiḥ || 

This shloka states that if you take 100, multiply it by 4, add 8, and then divide by 20,000, you get the approximate value 
of π. 

8.4.12 Mathematical Calculation 

𝜫 =
𝟒 𝑿 𝟏𝟎𝟎 + 𝟖 

𝟐𝟎𝟎𝟎𝟎
  

Simplifying the numerator: 

𝜫 =
𝟒𝟎𝟖 

𝟐𝟎𝟎𝟎𝟎
 = 0.0204 

Since the exact value from Aryabhata's shloka is actually in the form of circumference and diameter: 

π=3.1416 

This approximation of π (3.1416) is remarkably close to the modern value of π (3.14159). 

Aryabhata's contributions to trigonometry, algebra, and the approximation of π showcase his profound understanding 
of mathematical principles. His methods, articulated through elegant Sanskrit shlokas, provided accurate results and 
laid the groundwork for future mathematical developments. By examining his work, we appreciate the depth of ancient 
Vedic mathematical knowledge and its lasting influence on the field of mathematics. 

This formula yields a value for Pi accurate to four decimal places, demonstrating Aryabhata's profound mathematical 

understanding. Remarkably, Aryabhata used the term "Asanna" (असन्न), meaning approximate, indicating his 

awareness of the limitations of his calculated value and the incommensurability (irrationality) of Pi centuries before it 
was formally proven in Europe. 

8.5 Brahmagupta  

Brahmagupta's work in the field of mathematics is groundbreaking: 

 Zero and Negative Numbers: He formalized the use of zero and worked with negative numbers in arithmetic 
operations. 

 Algebra and Geometry: His Brahmasphutasiddhanta includes solutions to quadratic equations, rules for 
arithmetic operations with zero, and area calculations for various geometric shapes. 

Brahmagupta, an eminent mathematician and astronomer from ancient India, made significant contributions to the 
fields of algebra, arithmetic, and geometry. His seminal work, the Brahmasphutasiddhanta, contains comprehensive 
rules and procedures for various mathematical operations, including the use of zero and negative numbers, solutions to 
quadratic equations, and calculations for geometric shapes. Here, we will explore some of these contributions with 
examples: 

8.5.1 Zero and Negative Numbers 

Brahmagupta was one of the first to treat zero as a number and provided rules for arithmetic operations involving zero. 
He also worked with negative numbers. 

षुण्यम्संख्या। ṣuṇyamsaṃkhyā | This simply translates to "Zero is a number." 

Rules for Zero From Brahmasphutasiddhanta : 

रुणेनशून्येचगणेगहृीत।े ruṇenaśūnyecagaṇegṛhīte | Which translates to "If zero is added to a number or subtracted from a 

number, the number remains unchanged." 
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Examples: 

 Addition with Zero: 5+0=5 
 Subtraction with Zero: 5−0=5 
 Multiplication with Zero: 5×0=0 

Rules for Negative Numbers: 

रुणंधनंचक्रक्रया। ruṇaṃdhanaṃcakriyā | This means "A negative number subtracted from zero is a positive number." 

Examples: 

Addition of Negative Numbers: (−3) + (−2) = −5 

Subtraction of Negative Numbers: (−3) − (−2) = −1 

Multiplication of Negative Numbers: (−3) × (−2) = 6 

Algebra and Quadratic Equations 

Brahmagupta provided solutions to quadratic equations of the form 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 

क्षयद्र्वयघ्नाधधनयुतंर्वर्धम।् kṣayadvayaghnārdhanayutaṃvarjam | 

This translates to "To the absolute number, add the product of the coefficients of the unknown and divide by twice the 
square of the coefficient of the unknown." 

Example: Consider the quadratic equation: 𝟐𝒙𝟐 − 𝟒𝒙 − 𝟔 = 𝟎 

Following Brahmagupta's method: 

 Compute the discriminant:  
 Δ = 𝒃𝟐 − 𝟒𝒂𝒄 = (−𝟒)𝟐 − 𝟒(𝟐)(−𝟔) = 𝟏𝟔 + 𝟒𝟖 = 𝟔𝟒 

 The roots are: 

 𝒙 =  
−𝒃±√∆

𝟐𝒂
 = 

−𝟒±√𝟔𝟒

𝟒
 = 

𝟒±𝟖

𝟒
 

 X = 3 and x = 1. 

8.5.2 Geometry: Area Calculations 

Brahmagupta also provided formulas for calculating the area of cyclic quadrilaterals (a quadrilateral with all its vertices 
on the circumference of a circle). 

Sūtra for the area of a cyclic quadrilateral: 

समत्सस्येहरणंस्र्वाधधक्षयरेखिः। samatsyeharaṇaṃsvārdhakṣayarekhaḥ | This translates to "The square root of the product of 

the half-perimeter and the differences between the half-perimeter and the sides gives the area." 

Example: Consider a cyclic quadrilateral with sides a=5, b=6, c=7 and d=8. 

 Compute the semi-perimeter s:  

𝒔 =
𝒂 + 𝒃 + 𝒄 + 𝒅

𝟐
=

𝟓 + 𝟔 + 𝟕 + 𝟖

𝟐
= 𝟏𝟑 

 Calculate the area using Brahmagupta's formula:  

Area= √(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)(𝑠 − 𝑑) =  √(13 − 5)(13 − 6)(13 − 7)(13 − 8) 
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=√8 𝑋 7 𝑋 6 𝑋 5 =  √1680 = 41. 

Formalization of Arithmetic Operations 

Brahmagupta formalized arithmetic operations, including multiplication and division, which laid the groundwork for 
future algebraic developments. 

सर्वणाधिार्वं। savarṇābhāvaṃ | This means "Multiply the numbers." 

िाज्योत्तरोनिः| bhājyottaronaḥ| This translates to "Divide the numbers." 

Brahmagupta's pioneering work in mathematics includes a broad spectrum of concepts, from the introduction of zero 
and negative numbers to sophisticated algebraic solutions and geometric calculations. His contributions, encapsulated 
in the Brahmasphutasiddhanta, significantly advanced the mathematical knowledge of his time and laid foundational 
principles for future developments in the field. His algorithms for arithmetic operations, quadratic equations, and area 
calculations demonstrate an early and profound understanding of mathematical concepts, which continue to be relevant 
in modern mathematics. 

8.6 Bhāṣkarācārya 

Bhāṣkarācārya made substantial contributions to mathematics and astronomy: 

 Calculus: His work anticipates many concepts of differential calculus. 
 Number Systems and Algebra: Bhaskara's Bijaganita (Algebra) contains advanced methods for solving 

equations and a clear exposition of mathematical concepts. 

Bhāṣkarācārya, also known as Bhaskara II, was a preeminent Vedic mathematician and astronomer in ancient time. He 
made significant contributions to various fields, including calculus, number systems, and algebra. His seminal works, 
the Siddhanta Shiromani and Bijaganita (Algebra), showcase his mathematical prowess and advanced understanding. 
Here, we will discuss his contributions with mathematical examples and calculations. 

8.6.1 Calculus: Anticipating Differential Calculus 

Bhāṣkarācārya's work on calculus predates many concepts later formalized in Europe. He introduced methods for 
finding the instantaneous rate of change and provided a rudimentary form of the derivative. 

8.6.1.1 Example: Rate of Change 

In his Siddhanta Shiromani, Bhāṣkarācārya presents problems involving the rate of change. He described how to 
compute the instantaneous speed of a planet's motion. 

Consider the position function f(t) representing the position of a planet at time t. To find the instantaneous rate of 
change (velocity), we use the difference quotient: 

𝒇(𝒕+𝜟𝒕)−𝒇(𝒕)

𝜟𝒕
 

As Δt approaches zero, this expression approximates the derivative, f′(t). 

8.6.2 Number Systems and Algebra 

In Bijaganita (Algebra), Bhāṣkarācārya detailed methods for solving equations and presented a clear exposition of 
mathematical concepts. His work includes solutions to quadratic equations, operations with zero, and indeterminate 
equations. 

Solving Quadratic Equations 

Example: 

Consider the quadratic equation: 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 
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Bhāṣkarācārya provided a solution method similar to the quadratic formula. Let's solve the equation 𝒂𝒙𝟐 − 𝟒𝒙 − 𝟔 − 𝟎: 

 Calculate the discriminant: 

 𝜟 =  𝒃𝟐–  𝟒𝒂𝒄 =  (−𝟒)𝟐–  𝟒(𝟐)(−𝟔) =  𝟏𝟔 +  𝟒𝟖 =  𝟔𝟒 

 Compute the roots: 

 𝒙 =  
−𝒃±√∆

𝟐𝒂
 = 

−𝟒±√𝟔𝟒

𝟒
 = 

𝟒±𝟖

𝟒
 

This gives us: 

X =x3 and x = -1 

8.6.3 Indeterminate Equations: The Chakravala Method 

Bhāṣkarācārya is renowned for his work on indeterminate equations, particularly the Pell's equation: 

𝒙𝟐 − 𝑵𝒚𝟐 = 𝟏 

He developed the Chakravala method to find integer solutions. 

Example: Solve 𝒙𝟐 − 𝟔𝟏𝒚𝟐 = 𝟏 

Initial Setup:  

Choose an initial value m close to √𝑵.  𝑭𝒐𝒓 𝑵 = 𝟔𝟏, √𝟔𝟏 = 7.81. Let's start with m = 8. 

 Compute the intermediate values:  

Using the equation 𝒌 = 𝒎𝟐 − 𝑵, we get: 

𝒌 = 𝟖𝟐 − 𝟔𝟏 = 𝟔𝟒 − 𝟔𝟏 = 𝟑 

 Iteration: Find a and b such that𝒂𝟐 − 𝑵𝒃𝟐 =  ±𝒌 : 

(7 + 8) = 15 and (7 - 8) = −1 

 We choose a =15 and b = 1. 
 Continue the process:  
 Iterate until k = 1. The Chakravala method systematically reduces k to 1, providing solutions. 

The solution process involves several iterations, ultimately yielding the fundamental solution: 

X = 1766319049 and y = 226153980 

9 Advanced Methods for Solving Equations 

Bhāṣkarācārya's Bijaganita includes techniques for solving higher-order equations and simultaneous equations. He 
employed methods such as substitution and elimination. 

Example: Solving a System of Equations 

Consider the system: 

2x + 3y = 13 

5x - y = 7 

9.1 Substitution Method 

 Solve the second equation for y: 
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Y = 5x - 7 

 Substitute y in the first equation: 

2x + 3(5x – 7) = 13 

 Simplify and solve for x: 

2x + 3(5x-7) = 13 

 Substitute x 

2x =15x – 21 = 13 = 17x – 21 = 13 

17x = 34 = x = 2 

The solution to the system is x = 2 and y = 3. 

Bhāṣkarācārya's contributions to mathematics encompass an impressive range of topics, from calculus and number 
systems to algebra and indeterminate equations. His innovative methods and advanced mathematical techniques laid 
the groundwork for future developments in these fields. The examples provided illustrate the depth and accuracy of his 
mathematical insights, demonstrating his profound understanding and legacy in the history of mathematics. 

10 Advanced Math in Poietic Forms 

The Vedic mathematicians were renowned for their remarkable precision mathematics. Vedic scriptures, including the 
Shatapatha Brahmana and the Rigveda, offer highly accurate numerical values for Pi, achieved through intricate 
mathematical encoding and advanced astronomical calculations in poietic form which can be sung. 

10.1 The Rigveda's Hidden Numerical Precision 

One of the most striking examples of this mathematical prowess is found in a Vedic verse from the Rigveda. Traditionally 
interpreted as a hymn in praise of Lord Shiva or Lord Indra, a technical translation and decryption process using Vedic 
numerical codes reveal that the verse approximates Pi to an astonishing 32 decimal places. This level of precision was 
unparalleled in the ancient world and only achieved in the West with the advent of computers. 

10.1.1 The Vedic Verse Revealing Pi 

गोपीिाग्यमधुव्रातिः शु्रगशोदचधसंचधगिः। खलर्ीवर्वतखातार्व गलहाला रसंधरिः॥ 

Decryption and Mathematical Interpretation 

By applying Vedic numerical codes to this verse, the Sanskrit consonants are assigned specific numerical values: 

 ka:क  - 1,kha:ख  - 2,ga:ग  - 3,gha:घ  - 4,gna:ङ  - 5,ca:च  - 6,cha:ि  - 7,ja:र्  - 8,jha:झ  - 9 

 ta:ि  - 1,tha:र्थ  - 2,da:ड  - 3,dha:ढ  - 4, ṇa :ण  - 5,ta:त  - 6,tha:र्थ  - 7,da:द  - 8,dha:ध  - 9 

 pa:प  - 1,pha:फ  - 2,ba:ब  - 3,bha:ि  - 4,ma:म  - 5 

 ya:य  - 1,ra:र  - 2,la:ल  - 3,va:र्व  - 4,sa:श  - 5,sha:ष  - 6,sa:स  - 7,ha:ह  - 8,kshah:क्ष  - 0 

Combining these values, the Vedic verse encodes the value of Pi as: 

3.1415926535897932384626433832792... 

This decoding process showcases the Vedic sages' deep understanding of mathematics, where they encoded important 
concepts within poetic forms. The use of numerical codes in these verses not only facilitated memorization but also 
required profound contemplation and analysis to decipher their full meaning. 

The Sophistication of Vedic Numerical Codes 
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The Vedic numerical codes provide a systematic framework for representing numerical values within Vedic scriptures. 
This method indicates a comprehensive understanding of mathematical principles and their applications, contrasting 
with the fragmented approaches of Western mathematicians in their historical attempts to calculate Pi. 

The sophisticated use of Vedic numerical codes indicates that ancient Vedic mathematicians had a systematic approach 
to representing numerical values within their scriptures. This approach was not just for memorization but also for 
embedding complex mathematical knowledge within poetic and religious texts. 

ancient Vedic rishis's mathematical innovations, represent a rich tradition of geometric and arithmetic knowledge. 
Their work transcends mere calculation, embodying a holistic approach that integrates ritual, philosophy, and 
mathematics. These ancient scholars laid the groundwork for many mathematical principles that continue to resonate 
across cultures and historical periods, underscoring the universality and timelessness of mathematical truths. 

By examining these contributions, we gain a deeper appreciation for the sophistication and breadth of Vedic 
mathematics, revealing a legacy of intellectual inquiry and practical application that continues to inspire 
mathematicians and scholars today. 

11 Integrating Mathematics with Ritual and Philosophy 

The integration of mathematics with ritual and philosophy is a distinctive feature of Vedic mathematics, illustrating a 
holistic approach where mathematical precision supports both practical and spiritual endeavors. This synthesis is most 
evident in the Sulba Sūtras, which are not merely mathematical treatises but are deeply intertwined with the Vedic 
rituals they aim to facilitate. 

11.1 The Sulba Sūtras: Practical and Spiritual Dimensions 

The Sulba Sūtras are ancient Vedic texts that provide instructions for constructing altars (yajnas) and other ritualistic 
structures. These texts, attributed to sages such as Baudhāyana, Āpastamba, and Kātyāyana, demonstrate an advanced 
understanding of geometry and arithmetic, which were essential for ensuring the precise dimensions required for Vedic 
rituals. The accurate construction of these altars was believed to uphold cosmic order and facilitate proper spiritual 
ceremonies. 

12 Philosophical Implications 

Harmony and Order 

12.1 Cosmic Symbolism 

The geometric constructions described in the Sulba Sūtras symbolize the harmony and order of the cosmos. For 
instance, the precise layout of altars, often involving complex shapes such as squares, rectangles, and circles, reflects a 
belief in the interconnectedness of the material and spiritual worlds. These constructions are not arbitrary but follow 
specific proportions and alignments, embodying the cosmic principles of balance and symmetry. 

Example 

The construction of a square altar with double the area of a given square requires the application of the Pythagorean 
theorem, showing a deep understanding of geometric principles. This construction is seen as a metaphor for expanding 
one's spiritual realm while maintaining balance and order. 

Mathematical Example 

If the side of the original square is a, the side of the new square with double the area is given by:  

New side = 𝒂√𝟐  

This precise mathematical relationship reflects the broader philosophical concept of harmony and proportionality. 
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12.2 Mathematics as Sacred Knowledge 

12.2.1 Integral to Rituals: 

The mathematical principles encoded in the Sulba Sūtras are considered sacred knowledge, essential for the 
performance of rituals that uphold cosmic order. Mathematics, in this context, is not a secular pursuit but a means to 
achieve spiritual goals. The accurate construction of ritual altars, as dictated by these mathematical principles, was 
believed to ensure the effectiveness of the rituals, thereby maintaining the balance of the cosmos. 

12.2.2 Philosophical Significance 

The use of mathematics in Vedic rituals underscores the idea that understanding and manipulating the material world 
through precise calculations is a pathway to spiritual enlightenment. The Sulba Sūtras elevate mathematics to a sacred 
science, integral to the performance of yajnas (sacrificial rituals) that connect the practitioner to the divine. 

Example: 

The construction of the Mahavedi altar, which is used in the Agnicayana ritual, requires meticulous geometric 
calculations to create a trapezoidal shape. The Sulba Sūtras provide detailed instructions on how to achieve the correct 
proportions, emphasizing the altar's role as a microcosm of the universe. 

13 Mathematical and Philosophical Integration 

13.1 Ritualistic Geometry 

 Altar Construction 

o Altars such as the Garhapatya (circular) and Ahavaniya (square) require precise measurements to ensure 
their effectiveness in rituals. 

o Example: The ratio of the perimeter of the Garhapatya altar to its diameter approximates Pi, reflecting a 
sophisticated understanding of geometric principles. 

 Square Root Approximations 

o Baudhāyana's method for approximating the square root of 𝟐(√𝟐 = 1.414) is essential for constructing 
squares and diagonals in altars. 

o This approximation is not only a mathematical achievement but also a philosophical one, symbolizing the 
quest for knowledge and precision in spiritual practices. 

13.2 Sacred Geometry 

 The geometric shapes and patterns used in Vedic rituals are believed to harness cosmic energies and bring 
about spiritual transformation. 

 Example: The Sri Yantra, a complex geometric pattern, is used in tantric rituals to represent the universe and 
aid in meditation. 

The integration of mathematics with ritual and philosophy in Vedic mathematics reflects a holistic worldview where 
the material and spiritual are deeply interconnected. The precision required for constructing altars and other ritualistic 
structures underscores the belief in a harmonious and ordered cosmos. Mathematics, as encoded in the Sulba Sūtras, is 
seen as sacred knowledge, integral to rituals that uphold cosmic order. This profound synthesis of geometry, arithmetic, 
and spirituality highlights the advanced understanding and enduring legacy of Vedic mathematicians 

14 Legacy and Impact of Ancient Vedic Rishis 

The mathematical legacy of ancient Vedic rishis is profound, spanning across centuries and continents, and continues 
to influence contemporary mathematical thought. Their insights and methodologies are not only remarkable for their 
time but also form the foundation upon which many modern mathematical principles are built. By acknowledging their 
contributions, we gain a richer, more inclusive understanding of the history of mathematics and its development. 

14.1 Influence on Subsequent Generations 

The work of ancient Vedic rishis like Baudhāyana, Āpastamba, Aryabhata, Brahmagupta, and Bhaskara II has profoundly 
impacted later mathematicians, both in Asia and beyond. 
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14.1.1 Transmission of Knowledge 

 Through Texts: 
o The mathematical treatises of these rishis were preserved and transmitted through meticulously copied 

manuscripts, ensuring that their knowledge reached subsequent generations. 
o Works like the Sulba Sutras, Aryabhatiya, Brahmasphutasiddhanta, and Bijaganita were studied and 

expanded upon by later scholars, both in Hindu, Christian, Greek, Persian and the Islamic world. 

 Influence on Islamic and European Mathematics: 
o The translation of Vedic mathematical texts into Arabic during the Islamic Golden Age played a crucial role 

in the development of algebra, arithmetic, and trigonometry in the Islamic world. 
o Scholars like Al-Khwarizmi and Al-Biruni were significantly influenced by the works of Vedic 

mathematicians, leading to advancements that would later be transmitted to Europe, fueling the 
Renaissance in mathematics. 

14.1.2 Direct Contributions 

 Algebra and Arithmetic: 
o Brahmagupta’s rules for arithmetic operations with zero and negative numbers laid the groundwork for 

modern algebra. 
o His Brahmasphutasiddhanta provided solutions to quadratic equations and introduced concepts that would 

later be crucial in the development of algebra. 

 Trigonometry: 
o Aryabhata’s introduction of trigonometric functions and their tables enabled precise astronomical 

calculations, influencing global astronomy. 
o Continued Relevance and Inspiration 

14.2 Cultural Exploration 

14.2.1 Philosophical Integration 

 The integration of mathematics with philosophy and spirituality in Vedic texts offers a holistic approach to 
knowledge, encouraging contemporary scholars to explore the interplay between different fields of study. 

 The Sulba Sutras, for example, illustrate how mathematical precision can be used to achieve spiritual goals, 
reflecting a worldview where mathematics is seen as a pathway to understanding the cosmos. 

14.2.2 Educational Impact 

 Modern educational systems nowadays incorporate the study of ancient Vedic mathematics, highlighting the 
contributions of Vedic rishis and inspiring students to appreciate the historical depth and cultural richness of 
mathematical inquiry. 

14.3 Inspiration for Modern Mathematicians 

14.3.1 Research and Development 

 The innovative methods and approximations developed by Vedic rishis continue to inspire mathematical 
research, particularly in the fields of number theory, geometry, and algebra. 

 Their work demonstrates the importance of creativity and intuition in mathematical discovery, encouraging 
modern mathematicians to explore unconventional approaches. 

14.3.2 Interdisciplinary Approaches 

 The holistic approach of Vedic mathematics, integrating ritual, philosophy, and mathematical precision, serves 
as a model for interdisciplinary research, fostering collaboration between mathematicians, philosophers, and 
scientists. 

14.4 Reclaiming Their Place in History 

14.4.1 Recognition and Revaluation 

 Global Acknowledgment 
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o By reclaiming the contributions of ancient Vedic rishis, we not only honor their legacy but also correct the 
historical narrative that has often overlooked non-Western contributions to mathematics. 

o Scholars and educators are increasingly recognizing the importance of these contributions, leading to a more 
inclusive and accurate portrayal of mathematical history. 

 Cultural Pride and Identity 
o Acknowledging the achievements of Vedic rishis fosters a sense of pride and identity, particularly in India and 

Nepal, where these contributions form a vital part of the cultural heritage. 
o This recognition also encourages young scholars to pursue studies in mathematics and science, inspired by 

the rich intellectual tradition of their ancestors. 

14.5 Enriching Our Understanding 

 Diverse Intellectual Traditions: 
o The study of Vedic mathematics enriches our understanding of the diverse intellectual traditions that have 

shaped human civilization, highlighting the universal nature of mathematical inquiry. 
o It demonstrates that mathematical innovation is not confined to any one culture or period but is a shared 

human endeavor that transcends geographical and temporal boundaries. 

 Broader Perspective: 
o By incorporating the achievements of Vedic rishis into the broader narrative of mathematical history, we gain 

a more comprehensive perspective that acknowledges the interconnectedness of global intellectual 
traditions. 

o This broader perspective fosters a more inclusive and equitable view of history, recognizing the contributions 
of all cultures to the advancement of human knowledge. 

The mathematical legacy of ancient Vedic rishis is a testament to the enduring power of human ingenuity and the pursuit 
of knowledge. Their contributions continue to inspire and influence mathematicians, scholars, and students around the 
world, enriching our understanding of the diverse intellectual traditions that have shaped human civilization. By 
reclaiming their rightful place in the pantheon of mathematical pioneers, we honor their achievements and ensure that 
their wisdom continues to illuminate the path of discovery and innovation for generations to come. 

15 Conclusion 

In reimagining the narrative of the history of mathematics, we must first acknowledge the contribution of the ancient 
Vedic rishis, and first among them are Baudhāyana, Āpastamba, Aryabhata, Brahmagupta, Bhaskara, and others. Their 
works in mathematics have gone beyond time and culture to give deep insights that affect contemporary thought. 
Visionaries themselves, from the Pythagorean theorem and geometric constructions to advanced algebra, trigonometry, 
and novel ways of exploiting zero, stand as representatives of the perennial symbiosis between mathematics and 
culture.  

Their works reveal not only applications of mathematical principles but also their integration with ritual, philosophy, 
and the quest for cosmic harmony. In decoding these texts, we unravel advanced knowledge and innovative 
contributions these mathematical pioneers made. Its recognition in the hall of mathematical history should be able to 
mark this as part of a broader appreciation for the many intellectual traditions that have shaped human life. Theirs is a 
legacy where ancient rishis testify to the universal feature of mathematical inquiry, an inspiration for successive 
generations to pursue furthering knowledge. In honoring them, we keep their wisdom shining and show the way to 
mathematics with deep cultural understanding through the years. 
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