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Abstract 

Pneumonia, a potentially fatal lung disease caused by viral or bacterial infection, poses challenges in diagnosis from 
chest X-ray images due to similarities with other lung infections. This research aims to develop a computer-aided system 
for pneumonia detection in children, enhancing diagnostic accuracy. In this paper, five established deep learning models 
such as VGG-16, VGG-19, ResNet-50, Inception-V3, Xception pre-trained on ImageNet have been used. These models 
have been applied on the chest X-ray dataset to optimize performance. Xception provides recall, specificity, accuracy 
and AUC of 97.43%, 91.02%, 95.06% and 94.23%, respectively.  
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1. Introduction

Pneumonia, typically triggered by bacterial infection, results in inflammation of lung tissues, leading to significant 
hospitalizations in the USA, with over a million cases annually, and unfortunately, about 50,000 fatalities. Effective 
management with antibiotics and antivirals is available, underscoring the importance of early detection and treatment 
to mitigate potentially fatal complications. While chest X-rays remain a primary diagnostic tool for pneumonia, 
interpreting them accurately poses challenges even for seasoned radiologists. Pneumonia manifestations in X-ray 
images are often indistinct, resembling other conditions or benign abnormalities, contributing to subjective 
interpretations and diagnostic variations among radiologists. Consequently, there is a pressing need for computer-
assisted diagnostic systems to aid radiologists in pneumonia detection from chest X-ray images [1-7].  

Diagnosing pneumonia in chest X-ray images poses a challenge even for experienced radiologists due to similarities 
with other diseases. Misdiagnosing bacterial or viral pneumonia can lead to incorrect treatment and potentially fatal 
outcomes for patients. Moreover, distinguishing pneumonia from the novel Coronavirus (Covid-19) is difficult due to 
their similarities. These factors underscore the urgent need for computer-aided systems (CAD) to assist in pneumonia 
diagnosis. Deep learning-based CAD approaches, particularly convolutional neural networks (CNNs), have gained 
traction in the medical field for their ability to rapidly infer and perform complex cognitive tasks. CNNs, inspired by the 
mammalian visual cortex, can autonomously evaluate numerous attributes, including those previously overlooked by 
radiologists. They have been successfully applied in various medical imaging tasks, such as skin lesion segmentation, 
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skin cancer classification [43-44], diabetic retinopathy detection, early lung cancer detection, arrhythmia detection, and 
pulmonary tuberculosis classification. [9-19].  

2. Literature Reviews 

The advent of automated pneumonia diagnosis in chest X-ray images represents a significant advancement in recent 
research. Various studies have explored the application of deep convolutional neural network (CNN) models for 
pneumonia diagnosis. Rajpurkar et al. [20] introduced CheXNet, a 121-layer CNN model trained on a dataset of 100,000 
chest X-ray images containing 14 different diseases. Testing against 420 chest X-ray images revealed that CheXNet 
outperformed expert radiologists in pneumonia detection. Kermany et al. [21] employed transfer learning to train a 
CNN model for pneumonia detection in chest X-ray images. Rajaraman et al. [22] utilized a CNN-based system to classify 
chest X-rays as normal versus pneumonia, bacterial versus viral pneumonia, and normal versus bacterial versus viral 
pneumonia, focusing on regions of interest (ROIs) containing only the lungs. Stephen et al. [23] proposed a CNN model 
trained from scratch, achieving remarkable classification performance in distinguishing pneumonia-infected 
individuals from others. Liang and Zheng [24] developed a CNN model with residual connections and dilated 
convolution methods for pneumonia detection, highlighting the impact of transfer learning on CNN models for 
classifying chest X-ray images. In [55], two transfer learning models, namely, VGG 16 and Xception, modified after 
applying additional layers with the base model. Modified Xception model provided an overall accuracy of 84.82% for 
Adam optimizer and 78.40% for RMSprop optimizer [55]. Modified VGG 16 model provided an overall accuracy of 
84.98% for Adam optimizer and 83.88% for RMSprop optimizer [55].  

3. Methodology 

In this study, our main aim is to develop an effective pneumonia detection system in chest X-ray images by using 
different deep learning models. 

3.1. Dataset 

The dataset utilized in this study was sourced from Kermany and Goldbaum [28], originating from chest X-ray scans of 
pediatric patients aged one to five years at the Guangzhou Women and Children’s Medical Center. It comprises a total 
of 5,856 chest X-ray images. Within the training subset, there are images from 5,232 patients, with 3,883 labeled as 
pneumonia and 1,349 as normal. The test subset comprises images from 624 patients, with 390 labeled as pneumonia 
and 234 as normal. Furthermore, pneumonia patients are categorized into two types: bacterial and viral. Table 1 
presents the numerical distribution of normal, bacterial, and viral samples in the dataset. Additionally, examples of 
images labeled as pneumonia or normal are illustrated in Fig. 1. 

Table 1 Summary of dataset 

Class Train Validation Test 

Normal 1349 234 234 

Pneumonia Viral 1345 148 148 

Pneumonia Bacterial 2538 242 242 

Total 5232 624 624 

3.2. Data Augmentation and Transfer Learning 

Data augmentation is a crucial technique that enhances the generalization ability of models, prevents overfitting, and 
improves model accuracy [29–31]. In this study, data augmentation was applied both before and during the training 
phase. Prior to training, it was observed that there were 2,534 fewer normal-labeled images compared to pneumonia-
labeled images in the dataset. To address this class imbalance, image processing methods were employed on the normal 
chest X-ray images. Specifically, 1,349 chest X-ray images in the training dataset underwent random augmentation 
including rotation (angle range of +10 to -10), zooming (range of 0.8–1.2), and horizontal flipping, resulting in the 
generation of 2,534 new augmented chest X-ray images. This approach helped achieve class balance in the training 
dataset. 

Another significant technique used to enhance the performance of deep neural networks is transfer learning. Transfer 
learning involves leveraging knowledge gained from solving one task to address a similar problem [32]. Recently, few 
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researchers have trained CNN networks from scratch. Instead, they have utilized CNN filters pre-trained on ImageNet 
[33] data, which typically comprises 1.2 million images across 1,000 classes [34]. This approach significantly reduces 
training time [35]. 

 

Figure 1 Images from chest X-ray dataset 

4. Experimental Results 

In the study, five established models have been trained to classify chest X-ray images. During the training process of 
these well-known models, various transfer learning and fine-tuning strategies have been experimented with, and 
configurations yielding successful results have adopted for the testing phase. At the training stage, a batch size of 32 
and a learning rate of 1e-4 were determined. The Adam optimizer is employed to minimize the categorical cross-entropy 
loss function. The softmax activation function is utilized in the last layer for classification purposes. To mitigate 
overfitting, early stopping is implemented. The Python programming language and the Keras deep learning library are 
utilized.  

 

Figure 2 Confusion matrices ResNet-50, Xception 
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Table 2 Classification results (%) of the deep learning models on balanced data 

Models Recall (%) Specificity (%) Accuracy (%) AUC (%) 

VGG-16 94.25 90.79 92.44 92.58 

VGG-19 89.85 89.11 90.82 90.48 

ResNet-50 95.89 91.45 94.42 93.67 

InceptionV3 96.24 89.16 93.71 92.79 

Xception 97.43 91.02 95.06 94.23 

Figure 2 shows the confusion matrices of ResNet-50 and Xception. Table 2 shows the classification results of the deep 
learning models on balanced data. Xception has the highest recall at 97.43%, indicating it correctly identified most 
positive samples. ResNet-50 has the highest specificity at 91.45%, meaning it correctly identified most negative samples. 
Xception has the highest accuracy at 95.06%, suggesting it had the highest overall correct predictions. Xception also has 
the highest AUC at 94.23%, showing the best performance in distinguishing between classes. Overall, Xception appears 
to be the best-performing model based on the provided metrics. 

Table 3 Comparison of the proposed method with the literature studies 

Ref. Classes Model Accuracy Recall Specificity 

[36] COVID-19, Viral pneumonia, 
Lung opacity, Normal 

RVCNet 91.27% 98.30% 90.48% 

[37] COVID-19, Pneumonia, Normal CoroNet 89.6% 89.92% - 

[38] COVID-19, Normal CO-IRV2 94.97% 93.63% 96.52% 

[39] COVID-19, Normal ResNet 50 76% 81.10% 61.50% 

[40] COVID-19, Normal ResNet 18 86.70% 81.50% - 

[41] COVID-19, Normal NASNet-Mobile 82.42% 78.16% - 

[42] Bacterial Pneumonia, Viral 
Pneumonia 

CNN 80.40% 77.55% 92.67% 

Proposed 
DL 

Normal, Pneumonia Xception 95.06% 97.43% 91.02% 

Table 3 shows the comparison of the proposed method with the literature studies. The proposed method using the 
Xception model outperforms the models referenced in the literature [36-42] across several metrics. Specifically, the 
Xception model achieves the highest accuracy at 95.06%, surpassing the next highest accuracy of 94.97% achieved by 
the CO-IRV2 model for COVID-19 classification. Additionally, the recall of Xception stands at 97.43%, which is slightly 
lower than the recall of 98.30% for RVCNet but significantly higher than most other models listed. In terms of specificity, 
Xception maintains a strong performance at 91.02%, which is comparable to the highest specificity of 96.52% by CO-
IRV2 but generally higher than others, such as ResNet 50's 61.50%. Thus, the Xception model demonstrates a balanced 
and superior performance in identifying both positive and negative samples compared to the other models, making it a 
robust choice for the classification tasks presented. 

5. Conclusion 

This paper mainly focuses on the application of deep learning models to detect pediatric pneumonia. Comparing the 
performance metrics of Xception with existing pretrained models confirms that our proposed model demonstrates 
higher efficiency. Our results indicate that Xception possesses powerful visualization capabilities and a high learning 
ability, which robustly aids in detecting normal and pneumonia cases. We believe our approach will be highly supportive 
and reliable for medical professionals. However, the current method has some limitations in multi-label classification, 
time consumption, and overall efficiency. In the future, we plan to address these issues by adding an additional layer to 
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Xception or other deep learning models to predict multi-label classes. Additionally, we will enhance the network layers 
to expand the dataset, aiming for predictions that are more accurate. 
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