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Abstract 

As the oil and gas industry increasingly explores deeper and more remote offshore sites, the maintenance of subsea 
infrastructure becomes paramount. The use of Artificial Intelligence (AI) in subsea maintenance offers promising 
solutions to enhance safety and efficiency in these challenging environments. This review explores strategic approaches 
to integrating AI into subsea maintenance operations. AI facilitates predictive maintenance by analyzing vast amounts 
of data collected from sensors and historical maintenance records. Machine learning algorithms can detect patterns and 
predict equipment failures before they occur, enabling proactive maintenance scheduling. This predictive capability 
reduces downtime and minimizes the risk of accidents by addressing potential issues before they escalate. AI-enabled 
autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) play a crucial role in subsea 
inspections and repairs. These AI-enhanced robots can navigate complex subsea environments, perform inspections, 
and execute maintenance tasks with greater precision and efficiency than human divers. By reducing the need for 
human intervention in hazardous environments, AI-driven AUVs and ROVs significantly improve safety. Furthermore, 
AI algorithms can optimize maintenance schedules based on factors such as equipment condition, environmental 
conditions, and operational requirements. By dynamically adjusting maintenance plans, operators can maximize 
equipment uptime while minimizing costs and risks. This proactive approach ensures that maintenance activities are 
conducted at the most opportune times, reducing the likelihood of unplanned downtime and improving overall 
efficiency. Moreover, AI facilitates condition-based maintenance strategies, where equipment health is continuously 
monitored in real-time. Sensors installed on subsea infrastructure collect data on factors such as temperature, pressure, 
and vibration, which is then analyzed by AI algorithms to assess equipment condition. By detecting early signs of 
degradation or malfunction, AI enables timely interventions, preventing costly breakdowns and ensuring optimal 
performance. In addition to predictive and condition-based maintenance, AI-driven analytics offer insights into 
operational performance and asset integrity. By analyzing data from various sources, including sensors, historical 
records, and operational logs, AI can identify trends, anomalies, and optimization opportunities. These insights enable 
operators to make data-driven decisions that enhance overall system reliability and efficiency. Strategic approaches to 
implementing AI in subsea maintenance require collaboration between technology providers, operators, and regulatory 
bodies. Establishing industry standards and guidelines for AI applications in subsea operations is crucial to ensure 
safety, reliability, and interoperability. Furthermore, investing in research and development to enhance AI algorithms 
and robotics technology is essential to unlock the full potential of AI in subsea maintenance. AI-enhanced subsea 
maintenance offers significant benefits in terms of safety and efficiency. By leveraging predictive analytics, autonomous 
robotics, and real-time monitoring, operators can optimize maintenance activities, reduce downtime, and minimize 
risks. Strategic approaches to integrating AI into subsea operations require collaboration, investment, and a 
commitment to advancing technology to meet the challenges of offshore environments. 
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1. Introduction 

The maintenance of subsea infrastructure is a critical aspect of the oil and gas industry, ensuring the reliability, safety, 
and efficiency of offshore operations (Olugu et al., 2022). Subsea equipment, including pipelines, wellheads, and control 
systems, is subjected to harsh environmental conditions and operational stresses, making regular maintenance 
essential to prevent failures, leaks, and environmental damage (Shafiee et al., 2020; Ani et al. 2024). This review 
provides an in-depth exploration of the strategic approaches to implementing Artificial Intelligence (AI) for improved 
safety and efficiency in subsea maintenance. Subsea maintenance is indispensable in the oil and gas industry due to 
several reasons: asset integrity, safety, environmental protection, operational continuity, regulatory compliance 
(Ferreira et al., 2020). 

Artificial Intelligence (AI) refers to the simulation of human intelligence processes by computer systems (Sarker, 2022). 
AI algorithms can analyze vast amounts of data, identify patterns, and make decisions without explicit human 
intervention. AI can analyze historical maintenance data and real-time sensor data to predict equipment failures before 
they occur (Keleko et al., 2022). By identifying patterns indicative of impending failures, it enables proactive 
maintenance scheduling, reducing downtime and minimizing risks. AUVs and ROVs can perform inspections and 
maintenance tasks in subsea environments with greater precision and efficiency than human divers (McLean et al., 
2020). These robots can navigate complex underwater terrain and execute tasks such as pipeline inspections, structural 
repairs, and valve maintenance. AI algorithms can optimize maintenance schedules based on factors such as equipment 
condition, operational requirements, and environmental conditions (Pinciroli et al., 2023). By dynamically adjusting 
maintenance plans, it ensures that maintenance activities are conducted at the most opportune times, maximizing 
equipment uptime and minimizing costs. AI enables condition-based maintenance strategies by continuously 
monitoring equipment health in real-time (Sharma et al., 2022). Sensors installed on subsea infrastructure collect data 
on parameters such as temperature, pressure, and vibration, which is then analyzed by AI algorithms to assess 
equipment condition (Sandhu et al., 2023). By detecting early signs of degradation or malfunction, it facilitates timely 
interventions, preventing costly breakdowns and ensuring optimal performance. 

This review aims to explore strategic approaches to implementing AI for improved safety and efficiency in subsea 
maintenance operations. By examining various applications of AI, including predictive maintenance, autonomous 
robotics, optimization of maintenance schedules, and condition-based maintenance, this review will highlight how AI 
can enhance subsea maintenance practices. Furthermore, the review will discuss the importance of collaboration 
between stakeholders, establishment of industry standards, investment in research and development, and overcoming 
challenges to successfully integrate AI into subsea maintenance operations. Ultimately, the goal is to provide insights 
into how AI can be effectively utilized to ensure the integrity, safety, and efficiency of subsea infrastructure in the oil 
and gas industry. 

2. Predictive Maintenance with AI 

Predictive maintenance is an advanced maintenance strategy that utilizes data analysis and machine learning 
algorithms to predict when equipment failures are likely to occur (Ouadah et al., 2022). Unlike traditional maintenance 
approaches, which rely on scheduled inspections or fixed intervals for maintenance activities, predictive maintenance 
aims to identify signs of impending equipment failure before it happens. By analyzing data collected from sensors, 
historical maintenance records, and other sources, predictive maintenance enables proactive interventions to prevent 
unplanned downtime and optimize maintenance schedules (Pech et al., 2021; Omole et al., 2024). Artificial Intelligence 
(AI) plays a crucial role in predictive maintenance by analyzing large volumes of data to detect patterns and anomalies 
indicative of equipment degradation or impending failures. Predictive maintenance requires access to relevant data 
sources, including sensor data, maintenance records, equipment specifications, and environmental conditions. Sensors 
installed on subsea equipment continuously monitor parameters such as temperature, pressure, vibration, and 
corrosion levels, providing real-time data for analysis. Raw data collected from sensors may contain noise, outliers, or 
missing values, which need to be processed before analysis. AI algorithms preprocess the data by cleaning, filtering, and 
normalizing it to ensure accuracy and consistency (Maharana et al., 2022). AI algorithms extract meaningful features 
from the preprocessed data to represent equipment health and performance. These features may include statistical 
measures, frequency domain analysis, or domain-specific features relevant to subsea operations. Machine learning 
algorithms, such as supervised learning, unsupervised learning, or reinforcement learning, are trained using historical 
data to learn patterns indicative of equipment failures (Bao and Li, 2021). During training, the algorithm adjusts its 
parameters to minimize prediction errors and optimize performance. Once trained, the AI model can predict future 



International Journal of Science and Research Archive, 2024, 12(01), 114–124 

116 

equipment failures based on new data inputs. The model analyzes current sensor readings and compares them to 
learned patterns to identify deviations or anomalies that may signal potential failures. Based on the predictions 
generated by the AI model, maintenance recommendations are generated, indicating the likelihood of equipment failure 
and the recommended actions to be taken. These recommendations can include scheduling preventive maintenance, 
replacing components, or adjusting operational parameters to mitigate risks. Predictive maintenance offers several 
benefits for subsea operations: By predicting equipment failures before they occur, predictive maintenance minimizes 
unplanned downtime, ensuring continuous operation of subsea infrastructure and maximizing production uptime 
(Olowe and Adebayo, 2015; Yazdi, 2024). Predictive maintenance reduces the need for emergency repairs and costly 
equipment replacements by enabling proactive interventions. This results in significant cost savings compared to 
reactive maintenance approaches. By identifying potential equipment failures in advance, predictive maintenance helps 
mitigate safety risks associated with subsea operations (Jimenez et al., 2020). Proactive maintenance interventions 
prevent accidents and hazardous situations, ensuring the safety of personnel and the environment. Predictive 
maintenance optimizes the reliability and performance of subsea equipment by addressing issues before they escalate. 
This extends the lifespan of equipment and improves overall operational efficiency. Predictive maintenance provides 
valuable insights into equipment health and performance, enabling data-driven decision making. Operators can 
prioritize maintenance activities, allocate resources efficiently, and optimize operational strategies based on predictive 
analytics (Ong et al., 2021). 

Shell's Prelude FLNG Project: Shell implemented predictive maintenance on its Prelude Floating Liquefied Natural Gas 
(FLNG) facility, located off the coast of Western Australia (Purcell and Longley, 2023). Using AI and predictive analytics, 
Shell monitors the health of critical equipment such as compressors, turbines, and pumps in real-time. By analyzing data 
from thousands of sensors, the predictive maintenance system identifies potential equipment failures and recommends 
proactive maintenance actions. This approach has helped Shell minimize downtime and optimize maintenance 
schedules, ensuring the reliability and efficiency of the Prelude FLNG facility. BP's Thunder Horse Platform: BP utilizes 
predictive maintenance on its Thunder Horse semi-submersible platform in the Gulf of Mexico (Zhao, 2022). AI 
algorithms analyze sensor data from various equipment, including blowout preventers, subsea pipelines, and 
production risers, to predict equipment failures and optimize maintenance activities. By implementing predictive 
maintenance, BP has reduced maintenance costs, improved equipment reliability, and enhanced safety performance on 
the Thunder Horse platform. Equinor's Mariner Field: Equinor implemented predictive maintenance on its Mariner 
Field, located in the UK North Sea (Singh et al., 2023). Using AI-driven analytics, Equinor monitors the condition of 
subsea equipment, including wellheads, control systems, and umbilicals, to predict maintenance needs and optimize 
operational efficiency. By proactively addressing potential equipment failures, Equinor has reduced downtime, 
increased production uptime, and improved safety performance on the Mariner Field. These case studies demonstrate 
the effectiveness of predictive maintenance in subsea operations, highlighting its role in optimizing asset performance, 
minimizing risks, and enhancing operational efficiency. By leveraging AI and predictive analytics, oil and gas operators 
can achieve significant benefits in terms of reliability, safety, and cost-effectiveness in subsea maintenance (Odili et al., 
2024). 

3. Autonomous Robotics in Subsea Maintenance 

Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs) are sophisticated robotic systems 
designed for underwater exploration, inspection, and maintenance tasks in subsea environments (Petillot et al., 2019; 
Adeleke et al., 2024). AUVs are self-propelled, untethered vehicles equipped with sensors, navigation systems, and 
propulsion systems, which operate independently, following pre-programmed missions or autonomously navigating 
underwater environments. They are designed for long-endurance missions and can reach depths ranging from a few 
meters to several thousand meters, and are equipped with various sensors, including sonar, cameras, and 
environmental sensors, to collect data on underwater topography, marine life, and environmental conditions 
(Eleftherakis and Vicen-Bueno, 2020). Remotely Operated Vehicles (ROVs) are tethered underwater vehicles controlled 
by operators from the surface using a cable connected to a control console, equipped with cameras, lights, manipulator 
arms, and sensors, allowing operators to perform detailed inspections and maintenance tasks. ROVs can operate at 
greater depths than AUVs and are commonly used for complex tasks such as pipeline inspections, subsea equipment 
installations, and repairs (Dalhatu et al., 2023). They are widely used in the offshore oil and gas industry, marine 
research, and underwater infrastructure inspections.  

AI algorithms enable AUVs to navigate autonomously through complex underwater environments by processing sensor 
data and making real-time navigation decisions (Cai et al., 2023). Machine learning algorithms allow AUVs to learn from 
previous missions and adapt their navigation strategies based on environmental conditions, obstacles, and mission 
objectives. AI-driven path planning algorithms optimize the trajectory of AUVs and ROVs to efficiently cover the target 
area and avoid obstacles. These algorithms take into account factors such as current, depth, terrain, and mission 
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objectives to generate optimal paths for navigation and inspection. AI algorithms enable AUVs and ROVs to recognize 
and classify underwater objects, such as pipelines, wellheads, and marine life, from sensor data. Computer vision 
techniques, combined with machine learning, allow AUVs and ROVs to identify and track objects of interest, enabling 
precise inspection and maintenance tasks (Macaulay and Shafiee, 2022.). AI-powered manipulation systems enable 
ROVs to perform complex tasks, such as valve operations, tool manipulation, and equipment repairs, autonomously. 
These systems use computer vision, sensor feedback, and machine learning to control manipulator arms and tools with 
precision in subsea environments. AUVs equipped with sensors and cameras can conduct autonomous inspections of 
subsea pipelines to detect corrosion, leaks, and structural defects. AI algorithms analyze inspection data in real-time to 
identify anomalies and prioritize maintenance interventions. ROVs equipped with manipulator arms and tools can 
perform maintenance tasks on subsea equipment, such as valve operations, bolt tightening, and component 
replacements. AI-driven manipulation systems enable ROVs to execute maintenance tasks autonomously, reducing the 
need for human intervention in hazardous environments. AUVs equipped with sonar and imaging systems can assess 
the structural integrity of offshore platforms, subsea structures, and underwater installations (Huy et al. 2023). AI 
algorithms analyze imaging data to identify cracks, corrosion, and fatigue damage, providing insights into the health of 
subsea structures. AUVs equipped with environmental sensors can monitor water quality, temperature, and marine life 
in subsea environments. AI algorithms analyze environmental data to assess the impact of offshore operations on 
marine ecosystems and identify potential environmental risks.  

Autonomous robotics minimize the need for human divers to perform dangerous tasks in hazardous subsea 
environments, reducing the risk of accidents and injuries (Brett, 2022). AUVs and ROVs can operate continuously for 
extended periods, covering large areas and performing repetitive tasks with high efficiency. AI-driven automation 
reduces the time and resources required for subsea inspections and maintenance, improving operational efficiency. AI 
algorithms enable precise navigation, object recognition, and manipulation in subsea environments, ensuring accurate 
inspections and maintenance interventions (O’Byrne et al., 2020). Autonomous robotics reduce the cost of subsea 
maintenance by minimizing downtime, optimizing maintenance schedules, and eliminating the need for costly offshore 
interventions. Autonomous robotics enable proactive environmental monitoring and maintenance, helping to minimize 
the environmental impact of offshore operations and prevent pollution incidents. Autonomous robotics, enhanced by 
AI, offer advanced solutions for subsea maintenance, inspection, and monitoring. AUVs and ROVs equipped with AI-
driven capabilities can autonomously navigate complex underwater environments, perform precise inspections, and 
execute maintenance tasks with efficiency and accuracy (Tosello et al., 2024; Chukwurah and Aderemi, 2024). By 
leveraging autonomous robotics, the oil and gas industry can improve safety, increase operational efficiency, and ensure 
the integrity of subsea infrastructure in challenging offshore environments. 

4. Optimization of Maintenance Schedules with AI 

Subsea equipment is critical for offshore operations, and any downtime can lead to significant production losses (Shafiee 
et al., 2020). Optimized maintenance schedules ensure that maintenance activities are conducted at the most opportune 
times, minimizing disruptions and maximizing equipment uptime. Efficient maintenance scheduling helps in reducing 
operational costs by avoiding unnecessary downtime and minimizing the need for emergency repairs. By optimizing 
maintenance schedules, operators can allocate resources more effectively, reducing maintenance-related expenses. 
Regular maintenance is essential for preserving the integrity and lifespan of subsea equipment. Optimized maintenance 
schedules ensure that equipment is serviced and maintained in a timely manner, preventing premature degradation 
and extending its operational lifespan. Well-planned maintenance schedules contribute to improved safety by reducing 
the likelihood of equipment failures and accidents. Proactive maintenance interventions mitigate risks associated with 
subsea operations, ensuring the safety of personnel and the environment. Regulatory bodies impose strict standards 
and regulations on subsea operations to ensure safety and environmental protection. Optimized maintenance schedules 
help operators comply with regulatory requirements by ensuring that equipment is maintained according to prescribed 
standards and guidelines (Vrana and Singh, 2021.). 

Artificial Intelligence (AI) algorithms optimize maintenance schedules by analyzing various factors and making data-
driven decisions to determine the most efficient maintenance strategies (Cheng et al., 2020). The process involves the 
following steps: data collection, data preprocessing, feature selection predictive modeling, optimization algorithms, and 
real-time adaptation. 

 AI algorithms consider the current health and condition of subsea equipment, as assessed by sensor data and predictive 
analytics. Maintenance schedules are adjusted based on equipment degradation, failure probabilities, and performance 
metrics. Maintenance schedules are tailored to meet operational requirements, taking into account factors such as 
production schedules, equipment availability, and downtime allowances (George et al., 2022). AI algorithms prioritize 
maintenance activities to minimize disruptions and maintain operational continuity. AI algorithms optimize 
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maintenance schedules based on resource availability, including personnel, equipment, materials, and support vessels. 
Maintenance activities are scheduled to coincide with resource availability, minimizing delays and resource conflicts. 
Maintenance schedules are adapted to environmental conditions, such as weather, sea state, and visibility. AI algorithms 
consider environmental factors to ensure the safety and effectiveness of maintenance operations. Also optimized to 
minimize costs while meeting maintenance objectives. AI algorithms consider cost factors such as labor costs, 
equipment rental costs, material costs, and opportunity costs associated with downtime. By scheduling maintenance 
activities at the most opportune times, optimized maintenance schedules minimize downtime and maximize equipment 
uptime, ensuring continuous operation and production efficiency. Efficient maintenance scheduling helps in reducing 
maintenance-related expenses by minimizing the need for emergency repairs, overtime labor, and expedited shipping 
of spare parts. Cost savings are achieved through better resource allocation and reduced downtime. Optimized 
maintenance schedules contribute to extending the lifespan of subsea equipment by ensuring that maintenance is 
performed in a timely manner (Ferreira et al., 2020). Preventive maintenance interventions prevent premature 
degradation and reduce the frequency of costly repairs. Well-planned maintenance schedules improve operational 
efficiency by minimizing disruptions, optimizing resource utilization, and streamlining maintenance activities. 
Operations run smoother, and productivity is increased as a result. Optimized maintenance schedules enhance safety 
by reducing the risk of equipment failures and accidents. Proactive maintenance interventions mitigate safety risks, 
ensuring compliance with regulatory requirements and industry standards (Sonko et al., 2024). AI-driven maintenance 
scheduling enables data-driven decision making by providing insights into equipment health, maintenance needs, and 
operational requirements. Operators can make informed decisions to optimize maintenance strategies and allocate 
resources efficiently. Optimization of maintenance schedules with AI offers significant benefits in terms of efficiency, 
cost savings, and operational performance in subsea operations. By leveraging AI algorithms to analyze data, forecast 
maintenance requirements, and optimize scheduling decisions, operators can maximize equipment uptime, reduce 
maintenance costs, and enhance safety and compliance in challenging offshore environments (Ohalete et al., 2023; 
Adelani et al., 2024). 

5. Condition-Based Maintenance Strategies 

Condition-Based Maintenance (CBM) is a maintenance strategy that involves monitoring the condition of equipment in 
real-time to determine when maintenance should be performed (Teixeira et al., 2020). Instead of performing 
maintenance at fixed intervals or when equipment fails, CBM relies on data collected from sensors and other monitoring 
systems to assess the health and performance of equipment. By analyzing this data, maintenance activities are planned 
and executed only when necessary, optimizing maintenance efforts and reducing downtime (Olowe et al., 2017; Khalid 
et al., 2021). Artificial Intelligence (AI) plays a crucial role in enabling condition-based maintenance by providing 
advanced analytics and decision-making capabilities. The key roles of AI in CBM include: Analyze data collected from 
sensors, equipment logs, and other sources to assess equipment condition and predict potential failures. Machine 
learning algorithms can detect patterns, trends, and anomalies in the data, providing insights into the health of the 
equipment. Predictive maintenance by forecasting equipment failures based on historical data and real-time sensor 
readings. By analyzing patterns indicative of impending failures, AI algorithms can predict when maintenance should 
be performed to prevent breakdowns and optimize equipment performance. Detect anomalies in equipment behavior 
or performance, signaling potential issues that require attention. By comparing current data to normal operating 
conditions, AI can identify deviations that may indicate underlying problems, allowing for proactive maintenance 
interventions. Provides decision support for maintenance planning and scheduling by recommending appropriate 
actions based on the analysis of equipment condition and performance data (Sedghi et al., 2021). AI algorithms prioritize 
maintenance tasks, allocate resources efficiently, and optimize maintenance schedules to minimize downtime and 
maximize equipment uptime. 

Sensors installed on equipment continuously monitor parameters such as temperature, pressure, vibration, and fluid 
levels (Javaid et al., 2021). These sensors collect real-time data, providing insights into the condition and performance 
of the equipment. Sensor data is collected and transmitted to a central monitoring system, where it is stored and 
analyzed. Advanced data acquisition systems ensure that data is captured accurately and in real-time, allowing for 
timely analysis and decision-making. AI algorithms analyze the collected data to assess equipment condition, detect 
anomalies, and predict potential failures. Data analysis techniques, such as statistical analysis, machine learning, and 
pattern recognition, provide insights into the health and performance of the equipment (Rajula et al., 2020). AI-driven 
diagnostic tools identify the root causes of equipment issues by correlating sensor data with known failure modes and 
patterns. These tools help maintenance teams understand the underlying causes of problems and take appropriate 
corrective actions. AI generates prognostic models that predict future equipment performance and maintenance needs 
based on current and historical data. These models forecast equipment degradation, remaining useful life, and failure 
probabilities, enabling proactive maintenance planning and scheduling. 
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CBM minimizes downtime by performing maintenance only, when necessary, based on the actual condition of the 
equipment (Acernese et al., 2021). By avoiding unnecessary maintenance activities, equipment downtime is reduced, 
and production uptime is maximized. It reduces maintenance costs by optimizing maintenance efforts and avoiding 
unnecessary repairs and replacements. By focusing resources on critical maintenance tasks, costs associated with labor, 
spare parts, and equipment downtime are minimized. Helps in extending the lifespan of equipment by identifying and 
addressing issues before they escalate. Proactive maintenance interventions prevent premature degradation and 
reduce the frequency of costly repairs, ensuring the long-term reliability and performance of equipment (Zhang et al., 
2022). CBM enhances safety by reducing the risk of equipment failures and accidents. Proactive maintenance 
interventions mitigate safety risks associated with equipment malfunctions, ensuring the safety of personnel and the 
environment. It improves operational efficiency by optimizing maintenance schedules and resources. By performing 
maintenance only, when necessary, operational disruptions are minimized, and productivity is increased. Also enables 
data-driven decision making by providing real-time insights into equipment condition and performance. Operators can 
make informed decisions based on predictive analytics and diagnostic information, optimizing maintenance strategies 
and resource allocation. Condition-Based Maintenance strategies, enabled by AI, offer significant advantages over 
traditional approaches by providing real-time insights into equipment condition, predicting potential failures, and 
optimizing maintenance efforts. By leveraging AI-driven analytics and real-time monitoring systems, operators can 
maximize equipment uptime, reduce maintenance costs, and enhance safety and reliability in industrial environments 
(Olowe and Kumarasamy, 2021; Ohalete et al., 2023). 

6. AI-Driven Analytics for Operational Insights 

AI-driven analytics in subsea maintenance involve the use of advanced algorithms and techniques to analyze large 
volumes of data collected from various sources (Kirschbaum et al., 20220). These analytics provide valuable insights 
into equipment health, operational performance, and maintenance needs, enabling operators to make informed 
decisions and optimize maintenance strategies. The key components of AI-driven analytics in subsea maintenance 
include data collection, preprocessing, analysis, and decision support. Sensors installed on subsea equipment collect 
data on parameters such as temperature, pressure, vibration, and fluid flow rates. This sensor data provides real-time 
insights into equipment condition and performance. Historical maintenance records contain information about past 
maintenance activities, equipment failures, and repair histories (Pinto et al., 2020). Analyzing this data helps in 
identifying trends and patterns in equipment behavior. Operational logs record operational parameters, production 
data, and system status information. Analyzing operational logs provides insights into equipment usage, performance, 
and efficiency. Environmental data, including weather conditions, sea state, and water quality, is collected to assess the 
impact of environmental factors on subsea operations. Imaging and video data captured by cameras and sonar systems 
provide visual information about subsea equipment, structures, and marine life.  

AI-driven analytics assess the health of subsea equipment by analyzing sensor data and identifying anomalies indicative 
of equipment degradation or malfunctions (Pagar et al., 2023). It predicts equipment failures and maintenance needs 
based on historical data and real-time sensor readings. Predictive analytics help in scheduling maintenance activities 
proactively, minimizing downtime and optimizing maintenance efforts. AI-driven analytics optimize equipment 
performance by analyzing operational data and identifying opportunities for efficiency improvements. Insights gained 
from analytics help in optimizing operational parameters and reducing energy consumption. AI algorithms detect faults 
and diagnose equipment issues by analyzing sensor data and identifying abnormal patterns. Diagnostic analytics help 
in identifying the root causes of problems and taking corrective actions. AI-driven analytics assess the impact of 
environmental conditions on subsea operations by analyzing environmental data (Hussain et al., 2024). Insights gained 
from analytics help in mitigating environmental risks and ensuring compliance with regulatory requirements. Data-
driven decisions are based on real-time data and advanced analytics, ensuring accuracy and reliability. Relying on data-
driven insights, operators can make informed decisions that lead to better outcomes. It enables proactive maintenance 
interventions based on predictive analytics. Identifying potential issues before they escalate, operators can prevent 
downtime and optimize maintenance efforts. Help in optimizing maintenance strategies and resource allocation, 
resulting in cost savings. Focusing resources on critical maintenance tasks and avoiding unnecessary repairs, operators 
can reduce maintenance costs. Contribute to improved safety by identifying safety risks and taking preventive 
measures. By analyzing operational data and identifying potential hazards, operators can mitigate safety risks and 
ensure the safety of personnel and the environment. Also helps in ensuring compliance with regulatory requirements 
and industry standards. Analyzing data and identifying areas of non-compliance, operators can take corrective actions 
to meet regulatory requirements and avoid penalties. AI-driven analytics provide valuable insights into equipment 
health, operational performance, and maintenance needs in subsea maintenance (Chelliah et al., 2023). By analyzing 
data collected from sensors, historical records, and operational logs, AI-driven analytics enable operators to make 
informed decisions, optimize maintenance strategies, and enhance safety and efficiency in subsea operations. Data-
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driven decision making is crucial for proactive maintenance, cost reduction, safety improvement, and regulatory 
compliance in subsea maintenance. 

7. Strategic Approaches to Implementing AI in Subsea Maintenance 

Collaboration between stakeholders, including operators, technology providers, and regulatory bodies, is crucial for the 
successful implementation of AI in subsea maintenance (Johansson et al., 2021). Operators of offshore facilities play a 
key role in driving the adoption of AI in subsea maintenance. They provide domain expertise, data, and operational 
insights necessary for developing effective AI solutions. Operators should collaborate with technology providers to 
define requirements, validate solutions, and integrate AI into existing workflows. Technology providers develop AI 
solutions tailored to the needs of subsea maintenance. They leverage expertise in AI, data analytics, and subsea 
engineering to develop innovative solutions that improve efficiency and reliability. Collaboration with operators helps 
technology providers understand specific challenges and requirements, ensuring that AI solutions meet industry needs 
(Arinze et al., 2024). Regulatory bodies oversee offshore operations and set standards and guidelines to ensure safety, 
environmental protection, and compliance. Collaboration with regulatory bodies is essential for establishing regulatory 
frameworks for AI applications in subsea maintenance. Regulatory bodies should work with operators and technology 
providers to develop guidelines for AI implementation, validation, and compliance. 

The establishment of industry standards and guidelines is critical for ensuring the safe and effective implementation of 
AI in subsea maintenance. SDOs, such as the International Organization for Standardization (ISO) and the American 
Petroleum Institute (API), develop standards and guidelines for the oil and gas industry (Watkins et al., 2023). SDOs 
should collaborate with operators, technology providers, and regulatory bodies to develop standards specific to AI 
applications in subsea maintenance. Industry organizations and consortia should develop guidelines for AI applications 
in subsea maintenance. These guidelines should cover aspects such as data quality, model validation, cybersecurity, and 
ethical considerations. By following standardized guidelines, operators and technology providers can ensure the 
reliability and safety of AI solutions. Certification programs should be established to certify AI solutions for use in subsea 
maintenance, ensures that AI solutions meet industry standards and regulatory requirements. Certification bodies 
should work closely with operators, technology providers, and regulatory bodies to develop certification criteria and 
processes (Matus and Veale, 2022). 

Investment in research and development (R&D) is essential for advancing AI technology and developing innovative 
solutions for subsea maintenance (Koroteev and Tekic, 2021). Public-private partnerships (PPPs) facilitate 
collaboration between government agencies, industry, and academia to fund R&D initiatives. PPPs provide funding and 
resources for research projects focused on developing AI solutions for subsea maintenance. These projects explore 
topics such as predictive analytics, autonomous robotics, and data-driven decision-making. Industry consortia bring 
together operators, technology providers, and research institutions to collaborate on R&D projects. Consortia pool 
resources and expertise to fund and conduct R&D initiatives focused on addressing common challenges in subsea 
maintenance (Guinn and Castille, 2021,). By sharing knowledge and best practices, consortia accelerate the 
development and adoption of AI solutions. Academic institutions conduct research on AI technologies and their 
applications in subsea maintenance. Universities collaborate with industry partners to address real-world challenges 
and develop cutting-edge solutions. Academic research contributes to the advancement of AI technology and the 
development of new algorithms, methodologies, and tools. 

Data quality and availability are key challenges in AI implementation. Subsea environments pose challenges for data 
collection, and data quality may be compromised due to sensor limitations or environmental factors. Operators should 
invest in data collection systems and processes to ensure data quality and availability for AI applications. Cybersecurity 
is a significant concern in AI implementation, as AI systems may be vulnerable to cyberattacks (Guembe et al., 2022). 
Operators should implement cybersecurity measures to protect AI systems from unauthorized access, data breaches, 
and manipulation. This includes encryption, access control, and intrusion detection systems. AI implementation 
requires specialized skills and expertise. Operators and technology providers should invest in training programs to 
build the skills of personnel involved in AI development, deployment, and operation (Wang et al., 2022). Training 
programs should cover topics such as AI algorithms, data analytics, and cybersecurity. Ethical and regulatory 
considerations must be addressed to ensure the responsible use of AI in subsea maintenance. Operators and technology 
providers should adhere to ethical guidelines and regulatory requirements related to data privacy, transparency, and 
accountability. Regulatory bodies should develop guidelines for AI applications in subsea maintenance and ensure 
compliance with existing regulations (Amaechi et al., 2022). By addressing these challenges and barriers through 
collaboration, standards development, investment in R&D, and training, the industry can successfully implement AI in 
subsea maintenance. AI-driven solutions have the potential to improve efficiency, reliability, and safety in subsea 
operations, leading to significant benefits for operators and the industry as a whole (Olajiga et al., 2024). 
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8. Conclusion 

In conclusion, the adoption of AI-enhanced subsea maintenance represents a significant advancement in the oil and gas 
industry, offering numerous benefits in terms of efficiency, safety, and reliability. By leveraging AI technologies, 
operators can optimize maintenance strategies, improve equipment uptime, and enhance operational performance in 
challenging subsea environments. AI-driven analytics and predictive maintenance enable proactive interventions, 
minimizing downtime and optimizing maintenance efforts. By predicting equipment failures and identifying safety 
risks, AI helps in preventing accidents and ensuring the safety of personnel and the environment. AI-driven maintenance 
strategies reduce maintenance costs by optimizing schedules, avoiding unnecessary repairs, and extending equipment 
lifespan. AI-driven analytics provide insights into equipment health and performance, allowing operators to address 
issues before they escalate and improve overall reliability. AI enables data-driven decision making by providing real-
time insights into equipment condition, operational performance, and maintenance needs. To fully realize the benefits 
of AI in subsea operations, a strategic approach to implementation is essential. Operators, technology providers, and 
regulatory bodies must collaborate to adopt the following strategic approaches: Foster collaboration between 
stakeholders to define requirements, develop solutions, and establish industry standards and guidelines for AI 
applications in subsea maintenance. Invest in research and development initiatives to advance AI technology and 
develop innovative solutions tailored to the needs of subsea maintenance. Provide training programs to build the skills 
and expertise necessary for AI implementation, including AI algorithms, data analytics, cybersecurity, and ethical 
considerations. Establish industry standards and certification programs to ensure the reliability, safety, and compliance 
of AI solutions for subsea maintenance. Embrace a culture of continuous improvement to evolve AI-driven maintenance 
strategies and adapt to changing operational needs and technological advancements. The integration of AI with 
autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) will revolutionize subsea 
maintenance, enabling autonomous inspections, repairs, and maintenance tasks. Edge computing technology will enable 
real-time processing and analysis of sensor data at the source, reducing latency and enabling faster decision-making in 
subsea environments. Predictive analytics will become more sophisticated, leveraging machine learning and artificial 
intelligence to predict equipment failures with greater accuracy and reliability. Digital twin technology will enable 
operators to create virtual models of subsea assets, allowing for simulation, monitoring, and optimization of 
maintenance activities in real-time. Integration with the Internet of Things (IoT) will enable seamless connectivity 
between sensors, equipment, and AI-driven analytics platforms, facilitating data-driven decision-making and 
optimization of maintenance strategies. AI holds great promise for revolutionizing subsea maintenance, offering 
benefits such as improved efficiency, enhanced safety, and cost savings. By adopting strategic approaches to 
implementation and embracing emerging technologies, the industry can unlock the full potential of AI in subsea 
operations, paving the way for a safer, more reliable, and more efficient future. 
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