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Abstract 

The main objective of this work is to propose the Least square method (LSM) using successive integration technique for 
solving Neutral delay differential equations (NDDEs). Continuous LSM and Discrete LSM have been presented by 
adopting different orthogonal polynomials as weighted basis functions. In this study, the most widely used classical 
orthogonal polynomials, namely, the Bernoulli polynomial, the Chebyshev polynomial, the Hermite polynomial, and the 
Fibonacci polynomial are considered. Numerical examples of linear and nonlinear NDDEs have been provided to 
demonstrate the efficiency and accuracy of the method. Approximate solutions obtained by the proposed method are 
well comparable with exact solutions. From the results it is observed that the accuracy of the numerical solutions by the 
proposed method increases as N (order of the polynomial) increases. The proposed method is very effective, simple, 
and suitable for solving the linear and nonlinear NDDEs in real-world problems. 

Keywords: Least square method; Neutral delay differential equations; Orthogonal polynomials; Successive integration 
technique 

1. Introduction

Neutral delay differential equations are a type of delay differential equations (DDEs) in which the highest-order 
derivative of the unknown function occurs with delay. DDEs and NDDEs arise in the fields of signal processing, digital 
images, control systems, epidemiology, chemical kinetics, etc. Some notable applications of DDEs and NDDEs are in 
electrochemical biosensor [1], cancer cells growth [2] and population model [3], human balancing models [4], quasi-
static piezoelectric beams [5]. 

Many authors have been investigated and developed various analytical and numerical methods to solve DDEs and 
NDDEs. Some of them are Adams predictor corrector method [6], Homotopy perturbation method [7], Reproducing 
kernel Hilbert space method [8], Variational iteration method [9], Elzaki transform method [10], Haar wavelet series 
method [11], Higher order derivative Runge Kutta method [12], Hybrid multistep block method [13] and Generalized 
rational multi-step method [14] for solving DDEs and NDDEs. 

The Least square method is a kind of weighted residual method to solve ordinary differential equations (ODEs). Daniele 
[15] has applied least square method to initial and boundary value problems of ODEs. Siti Farhana et al. [16] have solved 
ODEs by using LSM with an implementation of gradient method. Salisu [17] has investigated LSM for finding 
approximate solutions to ODEs. Parth et al. [18] have examined the performance of LSM on solving first order ODEs. 
Salisu and Abdulnasir [19] have used continuous LSM to solve second order ODEs. 
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In this study, two kinds of LSM, namely, Continuous LSM (CLSM) and Discrete LSM (DLSM) based on successive 
integration technique have been presented for solving NDDEs. We adopted four different orthogonal polynomials for 
weighted basis functions. Numerical examples are considered for testing the efficiency of the proposed method. In 
section 2, basic definition of polynomials is given. The description of discrete and continuous LSM for solving NDDEs 
are provided in section 3. In section 4, illustrative examples are provided. 

2. Basic definition of polynomials 

In this study, we consider the most widely used classical orthogonal polynomials, namely, the Hermite polynomial, the 
Bernoulli polynomial, the Chebyshev polynomial and the Fibonacci polynomial.  

2.1. Hermite Polynomial 

The Hermite polynomial 𝐻𝑛(𝑡) of order n is defined on the interval (−∞,∞). There are different ways to define for 
Hermite polynomial, one of them is the so-called Rodrigues’ formula 

𝐻𝑛(𝑡) = (−1)𝑛𝑒𝑡
2 𝑑𝑛

𝑑𝑡𝑛
𝑒−𝑡

2
………………(1) 

From Eqn. (1), the recurrence relation for the polynomials can be derived as 

𝐻𝑛(𝑡) = 2𝑡 𝐻𝑛−1(𝑡) − 𝐻𝑛−1
′ (𝑡) ………………………….(2) 

𝐻0(𝑡) can be obtained from Eqn. (1) and the remaining terms are determined by using the recursion relation Eqn. (2). 
Thus, we have the following sequence of polynomials: 

𝐻0(𝑡) = 1 

𝐻1(𝑡) = 2𝑡 

𝐻2(𝑡) = 4𝑡2 − 2 

𝐻3(𝑡) = 8𝑡
3 − 12𝑡 

𝐻4(𝑡) = 16𝑡
4 − 48𝑡2 + 12 

and so on. The 𝑛𝑡ℎ order Hermite polynomial 𝐻𝑛(𝑡) has a leading coefficient 2𝑛. 

2.2. Bernoulli Polynomial 

The Bernoulli polynomial is named after Jacob Bernoulli which combines the Bernoulli numbers and binomial 
coefficients. The generating function of 𝑛𝑡ℎ order Bernoulli polynomial is defined by 

∑ 𝐵𝑛(𝑡)
∞
𝑛=0

𝑥𝑛

𝑛!
=

𝑥𝑒𝑥𝑡

𝑒𝑥−1
………………….(3) 

The Bernoulli polynomial is explicitly written as: 

𝐵𝑛(𝑡) = ∑ (𝑛
𝑘
)𝑛

𝑘=0 𝐵𝑛−𝑘(𝑡
𝑘)……………………(4) 

for n ≥ 0. 

𝐵0(𝑡) can be obtained from Eqn. (3) and the remaining terms are determined by using the recursion relation. Thus, we 
have few terms of the Bernoulli polynomials as: 

𝐵0(𝑡) = 1 

𝐵1(𝑡) = 𝑡 − 1/2 

𝐵2(𝑡) = 𝑡2 − 𝑡 + 1/6 
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𝐵3(𝑡) = 𝑡
3 −

3

2
𝑡2 +

1

2
𝑡 

𝐵4(𝑡) = 𝑡4 − 2𝑡3 + 𝑡2 −
1

30
 

2.3. Chebyshev Polynomial 

The Chebyshev polynomial related to cosine functions on the interval [−1, 1] of order n is defined as 

𝑇𝑛(cos 𝑡) = cos(𝑛𝑡) ………………….(5) 

The recursion relation of Chebyshev polynomial is: 

𝑇𝑛+1(𝑡) = 2𝑡 𝑇𝑛(𝑡) − 𝑇𝑛−1(𝑡)…………………6) 

𝑇0(𝑡) and 𝑇1(𝑡) can be obtained from Eqn. (5). Then the remaining terms are determined by from Eqn. (6). Thus, we 
have the following sequence of polynomials: 

𝑇0(𝑡) = 1 

𝑇1(𝑡) = 𝑡 

𝑇2(𝑡) = 2𝑡
2 − 1 

𝑇3(𝑡) = 4𝑡3 − 3𝑡 

𝑇4(𝑡) = 8𝑡4 − 8𝑡2 + 1 

2.4. Fibonacci Polynomial 

The Fibonacci polynomials are generated by Fibonacci numbers. The recurrence relation of Fibonacci polynomial is: 

𝐹𝑛(𝑡) = {

0,                                          𝑖𝑓 𝑛 = 0
1,                                         𝑖𝑓 𝑛 = 1

𝑡𝐹𝑛−1(𝑡) + 𝐹𝑛−2(𝑡), 𝑖𝑓 𝑛 ≥ 2.
 

Using this relation, we have the following sequence of polynomials: 

𝐹0(𝑡) = 0 

𝐹1(𝑡) = 1 

𝐹2(𝑡) = 𝑡 

𝐹3(𝑡) = 𝑡2 + 1 

𝐹4(𝑡) = 𝑡3 + 2𝑡 

3. Solving NDDEs using Least Square method based on successive integration technique 

Consider the nth order NDDE 

𝑦(𝑛)(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏), 𝑦′(𝑡), 𝑦′(𝑡 − 𝜏), ), … , 𝑦(𝑛−1)(𝑡), 𝑦(𝑛−1)(𝑡 − 𝜏),  𝑦(𝑛)(𝑡 − 𝜏)), 𝑡 > 𝑡0…………… .. (7) 

with initial conditions  

𝑦(𝑖)(𝑡0) = ∅(𝑡), 𝑖 = 1, 2, 3, …  𝑡 ≤ 𝑡0 ………………… (8) 
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Here 𝜏 is the delay term and ∅(𝑡) is the history function.  

Let P(t) represent any orthogonal polynomials. For the proposed method, we assume that 

𝑦(𝑛)(𝑡) ≈ 𝐵𝑇𝑃(𝑡)𝑇 = ∑ 𝑐𝑗𝑃𝑗(𝑡)
𝑁
𝑗=0   ………………….. (9) 

where N being any positive integer. 

𝐵𝑇 = (𝑐0, 𝑐1, … 𝑐𝑁) 

𝑃(𝑡) = (𝑃0(𝑡), 𝑃1(𝑡) …𝑃𝑁(𝑡)) 

Our aim is to determine the polynomial coefficients 𝑐𝑗
′𝑠. For this, we integrate Eqn. (9) with respect to t from 𝑡0 𝑡𝑜 𝑡,  

𝑦(𝑛−1)(𝑡) = 𝑦(𝑡0) + ∫ 𝐵𝑇  𝑃𝑗(𝑡) 𝑑𝑡
𝑡

𝑡0

𝑦(𝑛−2)(𝑡) = 𝑦(𝑡0) + 𝑦
′(𝑡0) + ∫ ∫ 𝐵𝑇  𝑃𝑗(𝑡) 𝑑𝑡

𝑡

𝑡0

𝑡

𝑡0

. . .

𝑦′(𝑡) = ∑ 𝑦(𝑖)(𝑡0) + ∫ ∫ …
𝑡

𝑡0

𝑡

𝑡0
∫ 𝐵𝑇  𝑃𝑗(𝑡) 𝑑𝑡
𝑡

𝑡0

𝑛−1
𝑖=0

 (𝑛 − 1) 𝑡𝑖𝑚𝑒𝑠

𝑦(𝑡) = ∑ 𝑦(𝑖)(𝑡0)
𝑛
𝑖=0 + ∫ ∫ …

𝑡

𝑡0

𝑡

𝑡0
∫ 𝐵𝑇  𝑃𝑗(𝑡) 𝑑𝑡
𝑡

𝑡0

 𝑛 𝑡𝑖𝑚𝑒𝑠 }
 
 
 
 
 
 

 
 
 
 
 
 

 ……………… (10) 

Now, for delay terms  

𝑦(𝑛)(𝑡 − 𝜏) =  𝐵𝑇𝑃𝑗(𝑡 − 𝜏)

𝑦(𝑛−1)(𝑡 − 𝜏) = 𝑦(𝑡0) +  ∫ 𝐵𝑇  𝑃𝑗(𝑡 − 𝜏) 𝑑𝑡
𝑡

𝑡0

𝑦(𝑛−2)(𝑡 − 𝜏) = 𝑦(𝑡0) + 𝑦
′(𝑡0) + ∫ ∫ 𝐵𝑇  𝑃𝑗(𝑡 − 𝜏) 𝑑𝑡

𝑡

𝑡0

𝑡

𝑡0

. . .

𝑦′(𝑡 − 𝜏) = ∑ 𝑦(𝑖)(𝑡0)
𝑛−1
𝑖=0 + ∫ ∫ …

𝑡

𝑡0

𝑡

𝑡0
∫ 𝐵𝑇  𝑃𝑗(𝑡 − 𝜏) 𝑑𝑡
𝑡

𝑡0

 (𝑛 − 1) 𝑡𝑖𝑚𝑒𝑠

𝑦(𝑡 − 𝜏) = ∑ 𝑦(𝑖)(𝑡0)
𝑛
𝑖=0 + ∫ ∫ …

𝑡

𝑡0

𝑡

𝑡0
∫ 𝐵𝑇  𝑃𝑗(𝑡 − 𝜏) 𝑑𝑡
𝑡

𝑡0

 𝑛 𝑡𝑖𝑚𝑒𝑠 }
 
 
 
 
 
 

 
 
 
 
 
 

 ……………. (11) 

By substituting (10) and (11) in (7), we get the residue function R(t). The coefficients 𝑐𝑗′𝑠 can be obtained using the LSM 

which is based on weighted residuals minimization. In this study, we introduce Continuous Least Square Method (CLSM) 
and Discrete Least Square Method (DLSM).  

3.1. Continuous Least Square Method 

In CLSM, we make the residue function R tend to zero by minimizing the error function 

𝐸 = ∫ 𝑅2(𝑡)𝑑𝑡
Ω

  ………………………… (12) 

for 𝑡 𝜖 Ω. 

To obtain an optimum solution with minimal error E, we differentiate the Eqn. (12) with respect to 𝑐𝑗  and then equate 

to zero. Thus, we have 
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𝜕𝐸

𝜕𝑐𝑗
=

𝜕

𝜕𝑐𝑗
 ∫ 𝑅2(𝑡)  𝑑𝑡 = 0, for 𝑗 = 1, 2, … , 𝑁, 

which implies 

∫ 𝑅(𝑡) 
𝜕𝑅(𝑡)

𝜕𝑐𝑗
 𝑑𝑡 

𝑡=1

𝑡=0
= 0, for 𝑗 = 1, 2, … , 𝑁…………………… (13) 

This yields an algebraic system of linear and nonlinear equations subject to the linear and nonlinear terms involving in 
the Eqn. (7). By solving this system of equations, we get the respective polynomial co-efficient 𝑐𝑗 ’s from which the 

solution of the NDDE (7) can be obtained. 

3.2. Discrete Least Square Method  

In DLSM, we consider the residuals at the points 𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑁. Let  

𝐸 = ∑ 𝑅2(𝑡)𝑁
𝑖=1  ………………… (14) 

To obtain an optimum solution with minimal error E, we differentiate the Eqn. (14) with respect to 𝑐𝑗  and then equate 

to zero. Thus, we have 

𝜕𝐸

𝜕𝑐𝑗
= 0, for 𝑗 = 1, 2, … , 𝑁, 

This yields an algebraic system of linear and nonlinear equations. By solving this system of equations, we get the 
respective polynomial coefficients 𝑐𝑗 ’s from which the solution of the NDDE (7) can be obtained. 

4. Numerical Examples 

Three examples of NDDEs have been solved by using CLSM and DLSM based on successive integration technique with 
four orthogonal polynomials, namely Hermite, Bernoulli, Chebyshev, and Fibonacci. Here, for convenience, in the case 
of CLSM, we denote them as H-CLSM, B-CLSM, C-CLSM and F-CLSM respectively. Similarly, in the case of DLSM, we 
denote them as H-DLSM, B-DLSM, C-DLSM and F-DLSM respectively. 

4.1. Example 1  

Consider the second order linear NDDE with constant delay and variable coefficient 

𝑡𝑦′′(𝑡) + 𝑡𝑦(𝑡) + 𝑦′′(𝑡 − 1) + 𝑦′(𝑡 − 1) = 2cos (𝑡 − 1) 

with initial condition 𝑦(0) = −1 and 𝑦′(0) = 1. 

Exact solution is 𝑦(𝑡) = sin(𝑡) − cos (𝑡). 

Table 1 Solutions and Absolute Error results for Example 1 

t Exact Solution H-CLSM Solution H-DLSM Solution Error in H-CLSM Error in H-DLSM 

0.2 -0.78139724 -0.78139784 -0.78139783 5.999 e-07  5.876 e-07  

0.4 -0.53164265 -0.53164452 -0.53164448 1.877 e-06 1.832 e-06 

0.6 -0.26069314 -0.26069600 -0.26069591 2.861 e-06 2.775 e-06 

0.8 0.02064938 0.02064670 0.02064682 2.673 e-06 2.554 e-06  

1.0 0.30116867 0.30116777 0.30116790 8.998 e-07 7.707 e-07 

The numerical solutions obtained by using the proposed methods H-CLSM and H-DLSM with N = 7 are compared with 
the exact solution. The results are given in Table 1. The solution graphs obtained by using the proposed methods with 
N = 7 are presented in Figure 1. 
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Figure 1 Solution Graphs for Example 1 

4.2. Example 2  

Consider the following non-linear state-dependent NDDE 

𝑦′(𝑡) = cos(𝑡) (1 + 𝑦(𝑡𝑦(𝑡)2)) + 𝑦(𝑡)𝑦′(𝑡𝑦(𝑡)2) − sin (𝑡 + 𝑡𝑠𝑖𝑛(𝑡)2) 

with initial condition 𝑦(0) = 0. 

Exact solution is 𝑦(𝑡) = sin (𝑡). 

For this example, the error results of the proposed methods CLSM and DLSM using different polynomials with different 
values for N are presented in Tables 2 and 3. 

Table 2 Error Results in CLSM for Example 2 

Methods N = 3 N = 5 N = 7 

H-CLSM  2.3034e-05 2.0324e-05 3.3945e-06 

B-CLSM  2.3122e-05 8.3787e-05 6.2515e-06 

C-CLSM  2.3034e-05  2.5170e-05 1.6357e-05 

F-CLSM  2.3034e-05 3.2888e-05  5.2660e-06 

 

Table 3 Error Results in DLSM for Example 2 

Methods N = 3 N = 5 N = 7 

H-DLSM  1.9785e-04 5.7797e-07 1.1436e-09 

B-DLSM  1.9786e-04 5.7789e-07 1.3943e-09 

C-DLSM  6.2817e-04 5.7731e-07 5.7731e-09 

F-DLSM  1.9786e-04 5.7797e-07 1.1443e-09  

4.3. Example 3  

Consider the third order non-linear system of NDDE  
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𝑦1
′′′(𝑡) =  𝑦1

′′′(𝑡 − 2)𝑦1 (
𝑡

3
) + (𝑦1(𝑡))

2
3 + 2𝑡 + 𝑒−𝑡   

𝑦2
′′′(𝑡) =

1

2
𝑦2

′′′ (
𝑡

2
) + 𝑦2

′(𝑡 − 1)𝑦1 (
𝑡

3
) , 𝑡 ≥ 1 

with history function 𝑦1(𝑡) = 𝑒
𝑡  and 𝑦2(𝑡) = 𝑡

2, 𝑡 ∈ [−2, 0]. 

The given initial conditions are 

𝑦1(0) = 1, 𝑦1
′(0) = 1, 𝑦1

′′(0) = 1 

𝑦2(0) = 0, 𝑦2
′ (0) = 0, 𝑦2

′′(0) = 2 

The solution graphs obtained by using the proposed CLSM and DLSM with N = 7 are compared with Analytical algorithm 
presented in [20]. They are given in Figure 2. 

Proposed B-CLSM 

 

Proposed B-DLSM

 

Analytical Algorithm [20] 

 

Figure 2 Comparison of Solutions for Example 3 

5. Conclusion 

In this study, a new approach of continuous and discrete Least square methods based on successive integration 
technique is proposed for solving Neutral delay differential equations. Numerical examples of linear and nonlinear 
NDDEs with constant, state-dependent and pantograph delays have been considered to demonstrate the efficiency of 
the proposed method.  
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The numerical results demonstrates that the proposed least square method gives results with good precision. Also, the 
accuracy of the results improves with increasing N (order of polynomial). Hence it is evident that the proposed method 
is very effective, simple, and suitable for solving linear and nonlinear NDDEs in real world problems. 
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