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Abstract 

The main objective of this work is to propose the polynomial based Subdomain collocation method using successive 
integration technique for solving delay differential equations (DDEs). In this study, the most widely used classical 
orthogonal polynomials, namely, the Bernoulli polynomial, the Chebyshev polynomial, the Hermite polynomial, and the 
Fibonacci polynomial are considered. Numerical examples of linear and nonlinear DDEs have been considered to 
demonstrate the efficiency and accuracy of the method. Approximate solutions obtained by the proposed method are 
well comparable with exact solutions. From the results it is observed that the accuracy of the numerical solutions by the 
proposed method increases as N (order of the polynomial) increases. The proposed method is very effective, simple, 
and suitable for solving the linear and nonlinear DDEs in real-world problems. 

Keywords: Orthogonal polynomials; Subdomain collocation method; Successive integration technique; Delay 
differential equations; Pantograph 

1. Introduction

Delay differential equations stand as a vital class of equations. DDEs incorporate past states in the evolution of the 
system, where the present behavior depends not only on the current state but also on its history. DDEs plays a vital role 
in the fields of science and engineering. Some notable applications of DDEs are in electrodynamic model [1], economic 
model [2], electrochemical biosensor [3], cancer cells growth [4] and population model [5]. DDEs have been investigated by 
many authors and various analytical and numerical methods have been developed. Some of the numerical methods are 
Higher order derivative Runge Kutta method [6], Legendre pseudo spectral method [7], Sumudu transform method [8], 
Wavelets approach [9], Least square method based on successive integration technique [10]. 

The subdomain collocation method which belongs to the broader family of weighted residual methods stands out as a 
powerful technique for solving differential equations. This method offers a unique approach for solving complex 
problems by dividing the physical domain into non-overlapping subdomains and employing collocation techniques 
within each subdomain. Zhou et al. [11] proposed subdomain collocation method based on reproducing kernel 
approximation for solving elasticity problems. Lihua et al. [12] applied radial basis collocation method for fracture 
mechanics. Chu et al. [13] implemented finite subdomain collocation method with radial basis for solving singular 
problems. Mkhatshwa et al. [14] presented multi-domain multivariate spectral collocation method for solving nonlinear 
partial differential equations.  

The above-mentioned subdomain collocation methods using different polynomials are based on operational matrices. 
In this study, we propose a new approach of using Subdomain collocation method based on successive integration 
technique for solving DDEs. This paper is organized as follows: In Section 2, the basic definitions of different polynomials 
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are given. In Section 3, the description of the method for solving DDEs is presented. In Section 4, illustrative examples 
are provided.  

2. Basic Definition of Polynomial 

In this study, we consider the most widely used classical orthogonal polynomials, namely, the Hermite polynomial, the 
Bernoulli polynomial, the Chebyshev polynomial and the Fibonacci polynomial.  

2.1. Hermite Polynomial 

The Hermite polynomial 𝐻𝑛(𝑡) of order n is defined on the interval (−∞,∞). There are different ways to define Hermite 
polynomial, one of them is the so-called Rodrigues’ formula 

𝐻𝑛(𝑡) = (−1)𝑛𝑒𝑡
2 𝑑𝑛

𝑑𝑡𝑛
𝑒−𝑡

2
………………………….(1) 

From Eqn. (1), the recurrence relation for the polynomial can be derived as 

𝐻𝑛(𝑡) = 2𝑡 𝐻𝑛−1(𝑡) − 𝐻𝑛−1
′ (𝑡)…………………….(2) 

𝐻0(𝑡) can be obtained from Eqn. (1) and the remaining terms are determined by using the recursion relation Eqn. (2). 
Thus, we have the following sequence of polynomial: 

𝐻0(𝑡) = 1 

𝐻1(𝑡) = 2𝑡 

𝐻2(𝑡) = 4𝑡2 − 2 

𝐻3(𝑡) = 8𝑡
3 − 12𝑡 

𝐻4(𝑡) = 16𝑡
4 − 48𝑡2 + 12 

and so on. The 𝑛𝑡ℎ order Hermite polynomial 𝐻𝑛(𝑡) has a leading coefficient 2𝑛. 

2.2. Bernoulli Polynomial 

The Bernoulli polynomial is named after Jacob Bernoulli which combines the Bernoulli numbers and binomial 
coefficients. The generating function for the Bernoulli polynomial of order n is defined by 

∑ 𝐵𝑛(𝑡)
∞
𝑛=0

𝑥𝑛

𝑛!
=

𝑥𝑒𝑥𝑡

𝑒𝑥−1
………………..(3) 

The explicit formula for Bernoulli polynomial is: 

𝐵𝑛(𝑡) = ∑ (𝑛
𝑘
)𝑛

𝑘=0 𝐵𝑛−𝑘(𝑡
𝑘)………………..(4) 

for n ≥ 0, where 𝐵𝑘  are the Bernoulli numbers. 

𝐵0(𝑡) can be obtained from Eqn. (3) and the remaining terms are determined by using the recursion relation. Thus, we 
have few terms of the Bernoulli polynomial as: 

𝐵0(𝑡) = 1 

𝐵1(𝑡) = 𝑡 −
1

2
 

𝐵2(𝑡) = 𝑡
2 − 𝑡 +

1

6
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𝐵3(𝑡) = 𝑡
3 −

3

2
𝑡2 +

1

2
𝑡 

𝐵4(𝑡) = 𝑡4 − 2𝑡3 + 𝑡2 −
1

30
 

2.3. Chebyshev Polynomial 

The Chebyshev polynomial related to cosine functions on the interval [−1, 1] of order n is defined as 

𝑇𝑛(cos 𝑡) = cos(𝑛𝑡)……………(5) 

The recursion relation of Chebyshev polynomial is: 

𝑇𝑛+1(𝑡) = 2𝑡 𝑇𝑛(𝑡) − 𝑇𝑛−1(𝑡) ………………..(6) 

𝑇0(𝑡) and 𝑇1(𝑡) can be obtained from Eqn. (5). Then the remaining terms are determined by from Eqn. (6). Thus, we 
have the following sequence of polynomial: 

𝑇0(𝑡) = 1 

𝑇1(𝑡) = 𝑡 

𝑇2(𝑡) = 2𝑡
2 − 1 

𝑇3(𝑡) = 4𝑡3 − 3𝑡 

𝑇4(𝑡) = 8𝑡4 − 8𝑡2 + 1 

2.4. Fibonacci Polynomial 

In Mathematics, the Fibonacci polynomial is a polynomial sequence which can be considered of Fibonacci numbers. The 
Fibonacci polynomials are defined by a recurrence relation 

𝐹𝑛(𝑡) = {

0,                                      𝑖𝑓 𝑛 = 0
1,                                      𝑖𝑓 𝑛 = 1

𝑡𝐹𝑛−1(𝑡) + 𝐹𝑛−2(𝑡),     𝑖𝑓 𝑛 ≥ 2.
 

The first few terms of Fibonacci polynomial are: 

𝐹0(𝑡) = 0 

𝐹1(𝑡) = 1 

𝐹2(𝑡) = 𝑡 

𝐹3(𝑡) = 𝑡2 + 1 

𝐹4(𝑡) = 𝑡3 + 2𝑡 

3. Description of the Proposed Method 

Consider the nth order DDE of the form 

𝑦(𝑛)(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏), 𝑦′(𝑡), 𝑦′(𝑡 − 𝜏), ), … , 𝑦(𝑛−1)(𝑡), 𝑦(𝑛−1)(𝑡 − 𝜏)), 𝑡 > 𝑡0 (7) 

with initial conditions  

𝑦(𝑖)(𝑡0) = ∅(𝑡), 𝑖 = 1, 2, 3, …  𝑡 ≤ 𝑡0 …………………(8) 
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Here ∅(𝑡) is the initial function and 𝜏 is the delay term.  

Let P(t) represent any orthogonal polynomial. For the proposed method, we assume that 

𝑦(𝑛)(𝑡) ≈ 𝐵𝑇𝑃(𝑡)𝑇 = ∑ 𝑐𝑗𝑃𝑗(𝑡)
𝑁
𝑗=0   …………………….. (9) 

where N being any positive integer. 

𝐵𝑇 = (𝑐0, 𝑐1, … 𝑐𝑁) 

𝑃(𝑡) = (𝑃0(𝑡), 𝑃1(𝑡) …𝑃𝑁(𝑡)) 

Our aim is to determine the polynomial coefficients 𝑐𝑗
′𝑠. For this, we integrate Eqn. (9) with respect to t from 𝑡0 𝑡𝑜 𝑡,  

𝑦(𝑛−1)(𝑡) = 𝑦(𝑡0) +  ∫ 𝐵𝑇  𝑃𝑗(𝑡) 𝑑𝑡
𝑡

𝑡0

𝑦(𝑛−2)(𝑡) = 𝑦(𝑡0) + 𝑦
′(𝑡0) + ∫∫ 𝐵𝑇 𝑃𝑗(𝑡) 𝑑𝑡

𝑡

𝑡0

𝑡

𝑡0. . .

𝑦′(𝑡) =∑ 𝑦(𝑖)(𝑡0) + ∫ ∫ …
𝑡

𝑡0

𝑡

𝑡0

∫ 𝐵𝑇  𝑃𝑗(𝑡) 𝑑𝑡
𝑡

𝑡0

𝑛−1

𝑖=0

 (𝑛 − 1) 𝑡𝑖𝑚𝑒𝑠

𝑦(𝑡) = ∑ 𝑦(𝑖)(𝑡0)
𝑛

𝑖=0
+ ∫ ∫ …

𝑡

𝑡0

𝑡

𝑡0

∫ 𝐵𝑇  𝑃𝑗(𝑡) 𝑑𝑡
𝑡

𝑡0

 𝑛 𝑡𝑖𝑚𝑒𝑠 }
 
 
 
 
 
 

 
 
 
 
 
 

 ……………… . (10) 

 

Now, for delay terms  

𝑦(𝑛−1)(𝑡 − 𝜏) = 𝑦(𝑡0) + ∫ 𝐵𝑇  𝑃𝑗(𝑡 − 𝜏) 𝑑𝑡
𝑡

𝑡0

𝑦(𝑛−2)(𝑡 − 𝜏) = 𝑦(𝑡0) + 𝑦
′(𝑡0) + ∫∫ 𝐵𝑇  𝑃𝑗(𝑡 − 𝜏) 𝑑𝑡

𝑡

𝑡0

𝑡

𝑡0. . .

𝑦′(𝑡 − 𝜏) =∑ 𝑦(𝑖)(𝑡0)
𝑛−1

𝑖=0
+∫ ∫ …

𝑡

𝑡0

𝑡

𝑡0

∫ 𝐵𝑇  𝑃𝑗(𝑡 − 𝜏) 𝑑𝑡
𝑡

𝑡0

 (𝑛 − 1) 𝑡𝑖𝑚𝑒𝑠

𝑦(𝑡 − 𝜏) =∑ 𝑦(𝑖)(𝑡0)
𝑛

𝑖=0
+∫ ∫ …

𝑡

𝑡0

𝑡

𝑡0

∫ 𝐵𝑇  𝑃𝑗(𝑡 − 𝜏) 𝑑𝑡
𝑡

𝑡0

 𝑛 𝑡𝑖𝑚𝑒𝑠 }
 
 
 
 
 
 

 
 
 
 
 
 

………… . (11) 

Then we substitute (10) and (11) in (7) to get the residue function 𝑅(𝑡). In the subdomain method, the physical domain 
is divided into non-overlapping N subdomains. Here N is taken as the number of polynomial coefficients. Each weight 
function is selected as unity in the respective subdomain and zero in the remaining parts. That is,  

𝑤𝑖 = {
1,          𝑖𝑓 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1
0,           𝑒𝑙𝑠𝑒                    

  (𝑖 = 1,2, … , 𝑁)  ……….…………….. (12) 

Then, the average residual over each subdomain is made to zero.  

∫ 𝑤𝑖  𝑅(𝑡) 𝑑𝑡
𝑏

𝑎
= ∫ 𝑅(𝑡) 𝑑𝑡

𝑡𝑖+1
𝑡𝑖

= 0, (𝑖 = 1,2, … , 𝑁)……………….. (13) 
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This yields a system of linear or nonlinear algebraic equations subject to the linear and nonlinear terms in Eqn. (7). On 
solving this system of algebraic equations, we get the respective polynomial coefficients 𝑐𝑗 ’s from which the solution of 

the DDE (7) can be obtained. 

4. Numerical Simulations 

In this section, three numerical examples are given to demonstrate the accuracy and effectiveness of the proposed 
method. The proposed method based on successive integration technique uses Hermite, Chebyshev, Bernoulli and 
Fibonacci polynomials for solving linear and nonlinear DDEs. 

4.1. Example 1 

Consider the third order linear delay differential equation with constant delay 

𝑑3𝑦(𝑡)

𝑑𝑡3
= −𝑦(𝑡) − 𝑦(𝑡 − 0.3)  +  𝑒−𝑡+0.3, 0 ≤ 𝑡 ≤ 1 

with initial conditions  

𝑦(0) = 1, 𝑦′(0) = −1 and 𝑦′′(0) = 1. 

The exact solution is 𝑦(𝑡) = 𝑒−𝑡 . 

The numerical results are obtained by the subdomain method using different polynomials with various values of N. The 
absolute errors are presented in Tables 1 and 2. The solution graph for N = 7 using Hermite polynomial is presented in 
Fig. 1. 

Table 1 Absolute Errors at t = 1 for Example 1 

Polynomials N = 3 N = 5 N = 7 

Hermite 2.16 e-06 4.72 e-09 1.12 e-11 

Bernoulli 2.16 e-06  4.72 e-09  1.12 e-11  

Chebyshev 2.16 e-06  4.72 e-09  1.12 e-11 

Fibonacci 2.16 e-06 4.72 e-09  1.12 e-11  

 

Table 2 Absolute Errors in Example 1 (N = 7) 

t Hermite Bernoulli Chebyshev Fibonacci 

0.2 8.99 e-13 8.99 e-13 8.99 e-13 8.99 e-13 

0.4 2.56 e-12 2.56 e-12 2.56 e-12 2.56 e-12 

0.6 4.89 e-12 4.89 e-12 4.89 e-12 4.89 e-12 

0.8 7.85 e-12 7.85 e-12 7.85 e-12 7.85 e-12 

1.0 1.12 e-11 1.12 e-11 1.12 e-11 1.12 e-11 
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Figure 1 Solution graph for Example 1 using Hermite polynomial 

4.2. Example 2 

Let us consider the following nonlinear DDE with variable delay 

𝑦′(𝑡) + 𝑡𝑦(𝑡 − 𝑡2) + 𝑡𝑦2 = 1 + 𝑡2, 0 ≤ 𝑡 ≤ 1 

with the initial condition  

𝑦(0) = 0, 𝑡 𝜖 [0,1]. 

 The analytical solution is 𝑦(𝑡) = 𝑡. 

The numerical results are obtained by the subdomain method using different polynomials with various values of N. The 
absolute errors are presented in Table 3. The solution graph for N = 7 using Bernoulli polynomial is presented in Fig. 2. 

Table 3 Absolute Errors in Example 2 

Polynomials N = 3 N = 5 N = 7 

Hermite 5.16 e-03 1.19 e-06  4.03 e-14 

Bernoulli 5.16 e-03 1.19 e-06  4.03 e-14 

Chebyshev 5.16 e-03 1.19 e-06  4.03 e-14 

Fibonacci 5.16 e-03 1.19 e-06 4.03 e-14 
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Figure 2 Solution graph for Example 2 using Bernoulli polynomial 

4.3. Example 3 – Parkinson’s Disease Model [15] 

𝑦′(𝑡) = 0.1𝑦(𝑡 − 2) + 0.2𝑦(𝑡 − 5) + 0.3𝑦(𝑡 − 2)𝑦(𝑡 − 3), 0 ≤ 𝑡 ≤ 10 

with history function as  

𝑦(𝑡) = 0.5, 𝑡 > 0 and −3 < 𝑡 < 0. 

For this example, the numerical results are obtained by using the proposed method based on the different polynomials. 
The numerical simulations by the proposed methods are compared with the simulation by Step method using Picard 
approximation [15]. These have been shown in Fig. 3 and Fig. 4. 

 

Figure 3 Solution graph for Example 3 using Hermite polynomial 
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Figure 4 Numerical Simulations by Step-Method [15] 

5. Conclusion 

In this paper, a new approach of subdomain collocation method based on successive integration technique is proposed 
for solving delay differential equations. Numerical examples of linear and nonlinear DDEs with constant, variable and 
pantograph delays have been considered to demonstrate the efficiency of the proposed method.  

The numerical results demonstrates that the proposed method gives results with good precision. Also, the accuracy of 
the results improves with increasing N (order of polynomial). Hence it is evident that the proposed method is very 
effective, simple, and suitable for solving linear and nonlinear DDEs in real world problems. 
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